Phân tích đa thức thành nhân tử:
(a^2 + b^2 + ab)^2 - a^2 . b^2 - b^2 . c^2 -c^2. a^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^4+n^2+1\)
\(=n^4+2n^2+1-n^2\)
\(=\left(n^2+1\right)^2-n^2\)
\(=\left(n^2-n+1\right)\left(n^2+n+1\right)\)
Điều kiện cần để A là số nguyên tố
\(\orbr{\begin{cases}n^2-n+1=1\\n^2+n+1=1\end{cases}}\)
Tìm được 2 giá trị của n là 0,1 (-1 không là số tự nhiên)
Vì chỉ là điều kiện cần nên ta phải thử lại
Thử lại:
\(n=0\Rightarrow A=1\)(không thỏa mãn)
\(n=1\Rightarrow A=3\)(thỏa mãn)
Vậy \(n=1\)
Chúc bạn học tốt.
\(a)\)\(xy-x-y=1\)
\(\Leftrightarrow\)\(\left(xy-x\right)-\left(y-1\right)=2\)
\(\Leftrightarrow\)\(x\left(y-1\right)-\left(y-1\right)=2\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(y-1\right)=2\)
\(\Rightarrow\)\(\left(x-1\right);\left(y-1\right)\inƯ\left(2\right)\)
Lập bảng :
\(x-1\) | \(1\) | \(2\) | \(-1\) | \(-2\) |
\(y-1\) | \(2\) | \(1\) | \(-2\) | \(-1\) |
\(x\) | \(2\) | \(3\) | \(0\) | \(-1\) |
\(y\) | \(3\) | \(2\) | \(-1\) | \(0\) |
Vậy \(\left(x,y\right)\in\left\{\left(2;3\right),\left(3;2\right),\left(0;-1\right),\left(-1;0\right)\right\}\)
Chúc bạn học tốt ~
\(b)\)\(xy-2x-2y=1\)
\(\Leftrightarrow\)\(\left(xy-2x\right)-\left(2y-4\right)=5\)
\(\Leftrightarrow\)\(x\left(y-2\right)-2\left(y-2\right)=5\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(y-2\right)=5\)
\(\Rightarrow\)\(\left(x-2\right);\left(y-2\right)\inƯ\left(5\right)\)
Lập bảng :
\(x-2\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y-2\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(x\) | \(3\) | \(7\) | \(1\) | \(-3\) |
\(y\) | \(7\) | \(3\) | \(-3\) | \(1\) |
Vậy \(\left(x;y\right)\in\left\{\left(3;7\right),\left(7;3\right),\left(1;-3\right),\left(-3;1\right)\right\}\)
Chúc bạn học tốt ~
đặt A=\(5x^2+y^2+4xy-16x-6y+14\)
\(=\left(2x+y-3\right)^2+x^2-4x+4-12\)
\(=\left(2x+y-3\right)^2+\left(x-2\right)^2-12\)
\(\left(2x+y-3\right)^2\ge0\)
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(2x+y-3\right)^2+\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(2x+y-3\right)^2+\left(x-2\right)^2-12\ge-12\)
dấu = xảy ra khi
\(\hept{\begin{cases}2x+y-3=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=2\end{cases}}}\)
Vậy \(Min_A=-12\)khi x=2 , y=-1
\(\hept{\begin{cases}-1\le a\le2\\-1\le b\le2\\-1\le c\le2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a+1\right)\left(a-2\right)\le0\\\left(b+1\right)\left(b-2\right)\le0\\\left(c+1\right)\left(c-2\right)\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2\le a+2\\b^2\le b+2\\c^2\le c+2\end{cases}}\)
\(\Rightarrow\)\(6=a^2+b^2+c^2\le a+b+c+6\)\(\Leftrightarrow\)\(a+b+c\ge0\)
Dấu "=" xảy ra khi a=b=-1; c=2 và các hoán vị
Kẻ MF // BE
Xét tam giác BEC
có: BM = MC (gt)
BE // MF ( gt)
=> MF là đường trung bình của tam giác BEC ( định lí đường trung bình)
=> EF = FC ( tính chất) (1)
ta có: BE // MF
mà \(D\in BE\)
=> DE // MF
Xét tam giác AMF
có: AD = DM (gt)
DE // MF
=> DE là đường trung bình của tam giác AMF ( định lí đường trung bình)
=> AE = EF ( tính chất) ( 2)
Từ (1);(2) => AE = EF = FC
mà EF + FC = EC
=> EF + EF = EC
2. EF = EC
=> EF = EC/2
=> AE = EC/2 ( = EF)
hình tự kẻ
Đặt
\(\Rightarrow\hept{\begin{cases}x=a-b\\y=a-c\\z=b-c\end{cases}}\)
Ta được
\(B=\frac{1}{axy}+\frac{1}{bxz}+\frac{1}{cyz}=\frac{bcz-acy+abx}{abcxyz}\)
\(=\frac{bc\left(b-c\right)-ac\left(a-c\right)+ab\left(a-b\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{bc\left(b-c\right)-ac\left(a-b+b-c\right)+ab\left(a-b\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{bc\left(b-c\right)-ac\left(a-b\right)-ac\left(b-c\right)+ab\left(a-b\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{c\left(b-c\right)\left(b-a\right)+a\left(a-b\right)\left(b-c\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(b-c\right)\left(a-b\right)\left(a-c\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{1)}{abc}\)
Vậy ...
làm bừa thui,ai trên 11 điểm tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
đéo biết giải nhé