K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

Đề sai ở mẫu ấy! Mẫu chẳng có cái nào bình phương lên đâu bạn ạ!

12 tháng 2 2016

Phước Nguyễn bạn chắc là đề sai chứ /??/

12 tháng 2 2016

a) Ta có : \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\) <=> \(\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)<=>\(-a^2+2ab-b^2\le0\)<=>\(-\left(a^2-2ab+b^2\right)\le0\)<=>\(-\left(a-b\right)^2\le0\) (đúng với mọi a; b)

b) Ta có : \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)<=>\(\left(a+b+c\right)^2-3\left(a^2+b^2+c^2\right)\le0\)<=>\(a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2\le0\)<=>\(-2a^2-2b^2-2c^2+2ab+2ac+2bc\le0\)<=>\(-\left(a^2-2ab+b^2\right)-\left(b^2-2bc+c^2\right)-\left(c^2-2ca+a^2\right)\le0\)<=>\(-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2\le0\)(đúng với mọi a; b; c)

c) \(\left(a_1+a_2+...+a_n\right)^2\le n\left(a^2_1+a^2_2+...+a^2_n\right)\)<=>\(a^2_1+a^2_2+...+a^2_n+2a_1a_2+2a_1a_3+...+2a_{n-1}a_n-na^2_1-na^2_2-...-na^2_n\le0\)<=>\(-\left(n-1\right)a^2_1-\left(n-1\right)a^2_2-...-\left(n-1\right)a^2_n+2a_1a_2+2a_1a_3+...+2a_{n-1}a_n\le0\)<=>\(-\left(a^2_1-2a_1a_2+a^2_2\right)-\left(a^2_1-2a_1a_3+a^2_3\right)-...-\left(a^2_{n-1}-2a_{n-1}a_n+a^2_n\right)\le0\)<=>\(-\left(a_1-a_2\right)^2-\left(a_1-a_3\right)^2-...-\left(a_{n-1}-a_n\right)^2\le0\)(đúng với mọi a1; a2; ... an)

12 tháng 2 2016

754

ủng hộ mk đi các bạn

12 tháng 2 2016

mik lam the nay co dung khong nhi /??

đây lak :http :m.f29.imgvnecdn.net/2014/ /07/ 09 / de9 - 5430  - 140491 2088.jpg chép trong đấy chứ gì 

9 tháng 2 2016

An nhận nè em.

Gọi vế trái của ( ** ) là T, ta có:

\(T=\frac{m}{2}\left(Y+Y+X\right)+\left(n-\frac{m}{2}\right)X\)

Với \(X=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(Y=a+b+c\), theo bài toán 1 ta có \(X\ge3\);\(XY^2\ge27\).

Suy ra:

\(T\ge\frac{m}{2}.3\sqrt[3]{XY^2}+\left(n-\frac{m}{n}\right).3\)( do \(2n\ge m\))

\(\ge\frac{9m}{2}+3\left(n-\frac{m}{n}\right)=3\left(m+n\right)\)

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

 

9 tháng 2 2016

coi 3 số là a,b,c =>a=b=c=1

tich ủng hộ nhé

9 tháng 2 2016

Ta có: \(2.2.\sqrt{x^2+3}\le x^2+3+4=x^2+7\Leftrightarrow\sqrt{x^2+3}\le\frac{x^2+7}{4}\) (đẳng thức xảy ra khi x = 1.)

Áp dụng BĐT trên ta có: 

\(P\ge4\left(\frac{a^3}{b^2+7}+\frac{b^3}{c^2+7}+\frac{c^3}{a^2+7}\right)=4.\left(\frac{a^4}{ab^2+7a}+\frac{b^4}{bc^2+7b}+\frac{c^4}{ca^2+7c}\right)\ge4.\frac{\left(a^2+b^2+c^2\right)^2}{ab^2+bc^2+ca^2+7\left(a+b+c\right)}\) 

( Theo BĐT Schwarz)

Áp dụng BĐT Bunhiacopxki với 3 số ta có:

\(\left(ab^2+bc^2+ca^2\right)^2=\left(b.ab+c.bc+a.ca\right)^2\le\left(a^2+b^2+c^2\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\le\left(a^2+b^2+c^2\right)\frac{\left(a^2+b^2+c^2\right)^2}{3}=\frac{\left(a^2+b^2+c^2\right)^3}{3}=\frac{3^3}{3}=9\Rightarrow ab^2+bc^2+ca^2\le3\)

Ta có: \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow a+b+c\le3\)

Do đó:

\(P\ge4.\frac{\left(a^2+b^2+c^2\right)^2}{ab^2+bc^2+ca^2+7\left(a+b+c\right)}\ge\frac{4.3^2}{3+7.3}=\frac{3}{2}\)

Xảy ra đẳng thức khi a = b = c = 1.

Vậy min \(P=\frac{3}{2}\)  khi a = b = c = 1.

11 tháng 2 2016

mình đi, công đánh máy

9 tháng 2 2016

ĐKXĐ: \(x\ge\frac{3}{2}\)

\(PT\Leftrightarrow\frac{2x-3-x}{\sqrt{2x-3}+\sqrt{x}}-2\left(x-3\right)=0\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{2x-3}+\sqrt{x}}-2\right)=0\Leftrightarrow x=3\) 

hoặc  \(\frac{1}{\sqrt{2x-3}+\sqrt{x}}-2=0\Leftrightarrow2\sqrt{2x-3}+2\sqrt{x}=1\). Ta có:\(x\ge\frac{3}{2}\)

\(\Rightarrow\sqrt{2x-3}+2\sqrt{x}\ge0+2\sqrt{\frac{3}{2}}=\sqrt{6}>1\Rightarrow\)vô nghiệm

Vậy PT nghiệm duy nhất x = 3

9 tháng 2 2016

\(\sqrt{2x-3}-\sqrt{x}=2x-6.\)

\(\Rightarrow...\)

8 tháng 2 2016

đây là đề thi đấy ! mik làm bài thế này có đúng không nhỉ ?

8 tháng 2 2016

lam bai rat hay rat tot to cho cau diem 10 do

Một cửa quay bao gồm 3 cánh cửa có khả năng quay trong một căn phòng hình tròn. Đường kính của căn phòng này là 2 mét (200cm). 3 cánh cửa chia căn phòng ra làm 3 phần có diện tích bằng nhau. Sau đây là sơ đồ cánh cửa tại các vị trí khác nhau, khi nhìn từ góc thẳng đứng phía trên:2 phần cửa ra vào (phần nét đứt) có kích thước bằng nhau. Nếu phần cửa ra và cửa vào có kích cỡ quá lớn, các...
Đọc tiếp

Một cửa quay bao gồm 3 cánh cửa có khả năng quay trong một căn phòng hình tròn. Đường kính của căn phòng này là 2 mét (200cm). 3 cánh cửa chia căn phòng ra làm 3 phần có diện tích bằng nhau. Sau đây là sơ đồ cánh cửa tại các vị trí khác nhau, khi nhìn từ góc thẳng đứng phía trên:

2 phần cửa ra vào (phần nét đứt) có kích thước bằng nhau. Nếu phần cửa ra và cửa vào có kích cỡ quá lớn, các cánh cửa sẽ không thể ngăn cách không gian; một luồng không khí có thể đi thẳng qua 2 cánh cửa, từ bên ngoài tòa nhà vào bên trong tòa nhà (gây tăng/giảm nhiệt độ trong nhà một cách không mong muốn). Nhìn hình dưới đây để hình dung ra đường đi của luồng không khí trong trường hợp kích cỡ của 2 cánh cửa quá lớn.

Vậy, chiều dài tối đa của đường cong nét đứt của mỗi phần cửa ra/vào là gì, để không khí không thể đi thẳng từ cửa ra tới cửa vào và ngược lại?

0
6 tháng 2 2016

3) tính khoảng cách từ A đến O khoảng cách đó = k/c từ C đến O

suy ra dc: xC2+yC2=5

Mà C là điểm đối xứng  của A qua trục tung nên yC=-1

Tìm dc xC thế vào (P) xong 1 nốt nhạt còn 1 nốt nữa

tính từng khoảng cách AB,BC,AC rồi dùng pytago đảo c/m nó vuông

rồi so sánh 2 cgv coi thử nếu = nhau =>nó là t/g vuông cân

6 tháng 2 2016

đã giỏi còn tỏ ra an toàn hahaha