x^4 +8x =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; \(x^3\) + 64
= \(x^3\) + 43
= (\(x+4\))(\(x^2\) - 4\(x\) + 16)
b; 2\(x^2\) - 4\(x\)
= 2\(x\)(\(x-2\))
c; 6\(x^2\)y + 4\(xy^2\) + 2\(xy\)
= 2\(xy\)(3\(x\) + 2y + 1)
a) x³ + 64
= x³ + 4³
= (x + 4)(x² − 4x + 16)
b) 2x² − 4x
= 2x(x - 2)
c) 6x²y + 4xy² + 2xy
= 2xy(3x + 2y + 1)
d) Sửa đề: x² − x + y − 2xy + y²
= x² − 2xy + y² − x + y
= (x − y)² − (x − y)
= (x − y)(x − y − 1)
a+b+c+d=0
=>c+d=-(a+b)
\(a^3+b^3+c^3+d^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)
\(=\left(a+b\right)^3-\left(a+b\right)^3-3ab\left(a+b\right)-3cd\left(c+d\right)\)
=-3ab(a+b)-3cd(c+d)
\(=3ab\left(c+d\right)-3cd\left(c+d\right)=3\left(c+d\right)\left(ab-cd\right)\)
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
b: ΔABD=ΔACE
=>AD=AE: \(\widehat{BAD}=\widehat{CAE}\)
Xét ΔAHD vuông tại H và ΔAKE vuông tại K có
AD=AE
\(\widehat{HAD}=\widehat{KAE}\)
Do đó: ΔAHD=ΔAKE
=>HD=KE
c: ΔAHD=ΔAKE
=>AH=AK
Xét ΔABC có \(\dfrac{AH}{AB}=\dfrac{AK}{AC}\)
nên HK//BC
\(1)A=x^2-7x+2\\ =\left(x^2-2\cdot x\cdot\dfrac{7}{2}+\dfrac{49}{4}\right)-\dfrac{41}{4}\\ =\left(x-\dfrac{7}{2}\right)^2-\dfrac{41}{4}\)
Ta có: `(x-7/2)^2>=0` với mọi x
`=>A=(x-7/2)^2-41/4>=-41/4` với mọi x
Dấu "=" xảy ra: `x-7/2=0<=>x=7/2`
\(2)B=9x^2-12x+5\\ =\left(9x^2-12x+4\right)+1\\ =\left[\left(3x\right)^2-2\cdot3x\cdot2+2^2\right]+1\\ =\left(3x-2\right)^2+1\)
Ta có: `(3x-2)^2>=0` với mọi x
`=>B=(3x-2)^2+1>=1` với mọi x
Dấu "=" xảy ra: `3x-2=0<=>x=2/3`
1: \(\left(x-y\right)^2-\left(x+y\right)^2\)
\(=x^2-2xy+y^2-x^2-2xy-y^2\)
=-4xy
2: \(\left(7n-2\right)^2-\left(2n-7\right)^2\)
\(=\left(7n-2+2n-7\right)\left(7n-2-2n+7\right)\)
\(=\left(9n-9\right)\left(5n+5\right)\)
\(=9\left(n-1\right)\left(5n+5\right)⋮9\)
3: \(P=-x^2+6x+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left(x-3\right)^2+10< =10\forall x\)
Dấu '=' xảy ra khi x-3=0
=>x=3
4: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
=>\(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2abxy\)
=>\(a^2y^2-2abxy+b^2x^2=0\)
=>\(\left(ay-bx\right)^2=0\)
=>ay-bx=0
a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
\(\widehat{FAH}\) chung
DO đó: ΔAFH~ΔADB
b: ΔAFH~ΔADB
=>\(\dfrac{AF}{AD}=\dfrac{AH}{AB}\)
=>\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)
Xét ΔAFD và ΔAHB có
\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)
\(\widehat{FAD}\) chung
Do đó: ΔAFD~ΔAHB
c: ΔAFD~ΔAHB
=>\(\widehat{ADF}=\widehat{ABH}\)
=>\(\widehat{ADF}=\widehat{ACH}\)
Xét ΔAEH vuông tại E và ΔADC vuông tại D có
\(\widehat{EAH}\) chung
DO đó: ΔAEH~ΔADC
=>\(\dfrac{AE}{AD}=\dfrac{AH}{AC}\)
=>\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)
Xét ΔAED và ΔAHC có
\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)
\(\widehat{EAD}\) chung
Do đó: ΔAED~ΔAHC
=>\(\widehat{ADE}=\widehat{ACH}\)
=>\(\widehat{FDA}=\widehat{EDA}\)
=>DA là phân giác của góc FDE
a: Xét ΔDBE vuông tại D và ΔCDE vuông tại C có
\(\widehat{DEB}\) chung
Do đó: ΔDBE~ΔCDE
b:
Ta có: CH\(\perp\)DE
DB\(\perp\)DE
Do đó: CH//DB
Xét ΔHCD vuông tại H và ΔCDB vuông tại C có
\(\widehat{HCD}=\widehat{CDB}\)(hai góc so le trong, CH//DB)
Do đó: ΔHCD~ΔCDB
=>\(\dfrac{HC}{CD}=\dfrac{CD}{DB}\)
=>\(HC\cdot DB=CD^2\)
c: ABCD là hình chữ nhật
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm của BD
=>OB=OD(1)
Xét ΔEOD có HK//OD
nên \(\dfrac{HK}{OD}=\dfrac{EK}{EO}\left(2\right)\)
Xét ΔEOB có KC//OB
nên \(\dfrac{KC}{OB}=\dfrac{EK}{EO}\left(3\right)\)
Từ (1),(2),(3) suy ra HK=KC
=>K là trung điểm của HC
`a, x^2-6x+9-y^2`
`= (x-3)^2-y^2`
`=(x-3-y)(x-3+y)`
`b,x^2-4y^2+4x+4`
`= (x^2+4x+4)-(2y)^2`
`= (x+2)^2-(2y)^2`
`=(x+2-2y)(x+2+2y)`
`c, 4x^2+4x-y^2+1`
`=4x^2+4x+1-y^2`
`=(2x+1)^2-y^2`
`=(2x+1-y)(2x+1+y)`
`d, 4x^2-y^2+4y-4`
`= 4x^2-(y^2-4y+4)`
`= (2x)^2-(y-2)^2`
`= (2x-y+2)(2x+y-2)`
\(x^4+8x=0\)
=>\(x\left(x^3+8\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x^3+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x^4\) + 8\(x\) = 0
\(x^{ }\)(\(x^3\) + 8) = 0
\(\left[{}\begin{matrix}x=0\\x^3+8=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-2; 0}