K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BHCK có

M là trung điểm chung của BC và HK

=>BHCK là hình bình hành

b: BHCK là hình bình hành

=>BH//CK và BK//CH

Ta có: BH//CK

BH\(\perp\)AC

Do đó: CK\(\perp\)CA

Ta có: BK//CH

AB\(\perp\)CH

Do đó; BK\(\perp\)BA

c: Gọi O là giao điểm của HI và BC

BC là đường trung trực của HI

=>BC\(\perp\)HI tại O và O là trung điểm của HI

Xét ΔHIK có

O,M lần lượt là trung điểm của HI,HK

=>OM là đường trung bình của ΔHIK

=>OM//IK

=>IK//BC

Xét ΔCHI có

CO là đường cao

CO là đường trung tuyến

Do đó: ΔCHI cân tại C

=>CH=CI

mà CH=BK

nên BK=CI

Xét tứ giác BCKI có

BC//KI

BK=CI

Do đó: BCKI là hình thang cân

a: Ta có: ED//BC

=>\(\widehat{ADE}=\widehat{ABC}\)(hai góc so le trong) và \(\widehat{AED}=\widehat{ACB}\)(hai góc so le trong)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ADE}=\widehat{AED}\)

=>AE=AD

b: Ta có: AD+AB=BD

AE+AC=CE

mà AD=AE và AB=AC

nên BD=CE

Xét tứ giác BCDE có

BC//DE

BD=CE

Do đó: BCDE là hình thang cân

18 tháng 10

A B C D E

a/

DE//BC (gt) nên

\(\widehat{ADE}=\widehat{ABC}\) (Góc so le trong)

\(\widehat{AED}=\widehat{ACB}\) (Góc so le trong)

\(\widehat{ABC}=\widehat{ACB}\) (Góc ở đáy tg cân)

\(\Rightarrow\widehat{ADE}=\widehat{AED}\) => tg AED cân tại A => AE=AD

b/

DE//BC (gt) => DEBC là hình thang

Xét tg ABE và tg ADC có

AE=AD (cmt); AB=AC (cạnh bên tg cân)

\(\widehat{BAE}=\widehat{CAD}\) (Góc đối đỉnh)

=> tg ABE = tg ACD (c.g.c) => BE=CD

=> DEBC là hình thang cân

\(\dfrac{5x^6y^7+4x^5y^6+3x^4y^5}{-x^3y^2}\)

\(=\dfrac{-5x^6y^7}{x^3y^2}-\dfrac{4x^5y^6}{x^3y^2}-\dfrac{3x^4y^5}{x^3y^2}\)

\(=-5x^3y^5-4x^2y^4-3xy^3\)

\(\dfrac{8x^4y^3+24x^3y^2-2x^2y^2}{4x^2y^2}\)

\(=\dfrac{8x^4y^3}{4x^2y^2}+\dfrac{24x^3y^2}{4x^2y^2}-\dfrac{2x^2y^2}{4x^2y^2}\)

\(=2x^2y+6x-\dfrac{1}{2}\)

a: Ta có: \(AM=MB=\dfrac{AB}{2}\)

\(DP=PC=\dfrac{DC}{2}\)

mà AB=DC

nên AM=MB=DP=PC

Xét tứ giác MBCP có

MB//CP

MB=CP

Do đó: MBCP là hình bình hành

Hình bình hành MBCP có \(\widehat{MBC}=90^0\)

nên MBCP là hình chữ nhật

b: Gọi O là trung điểm của BH

Xét ΔHAB có

N,O lần lượt là trung điểm của HA,HB

=>NO là đường trung bình của ΔHAB

=>NO//AB  và NO=1/2AB

Ta có: NO//AB

AB\(\perp\)BC

=>NO\(\perp\)BC

Xét ΔBNC có

NO,BH là các đường cao

NO cắt BH tại O

Do đó: O là trực tâm của ΔBNC

=>CO\(\perp\)BN

Ta có: \(NO=\dfrac{1}{2}AB\)

AB=CD

\(CP=\dfrac{CD}{2}\)

Do đó: NO=CP

Xét tứ giác NOCP có

NO//CP

NO=CP

Do đó: NOCP là hình bình hành

=>NP//OC

mà OC\(\perp\)BN

nên BN\(\perp\)NP

c: Xét tứ giác ADBK có

M là trung điểm chung của AB và DK

=>ADBK là hình bình hành

=>KB//AD
mà BC//AD

và KB,BC có điểm chung là B

nên K,B,C thẳng hàng

6 tháng 10

Diện tích xung quanh của phần chụp đèn là:
Sxq = 1/2 C. d = 1/2 * (4*20) * 22,4 = 896 (cm^2)

a: Xét tứ giác ADME có

AD//ME

AE//MD

Do đó: ADME là hình bình hành

Hình bình hành ADME có \(\widehat{DAE}=90^0\)

nên ADME là hình chữ nhật

b: Sửa đề: ACMN là hình bình hành

Xét ΔABC có

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MD//AB

Do đó: D là trung điểm của AC

Xét tứ giác AMBN có

E là trung điểm chung của AB và MN

=>AMBN là hình bình hành

Hình bình hành AMBN có MN\(\perp\)AB

nên AMBN là hình thoi

=>AN//BM và AN=BM

Ta có: AN//BM

M thuộc BC

Do đó: AN//MC

Ta có: AN=BM

BM=MC

Do đó: AN=MC

Xét tứ giác ACMN có

AN//CM

AN=CM

Do đó: ACMN là hình bình hành

c: D là trung điểm của AC

=>\(AD=DC=\dfrac{AC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

E là trung điểm của AB

=>\(AE=EB=\dfrac{AB}{2}=\dfrac{6}{2}=3\left(cm\right)\)

ADME là hình chữ nhật

=>\(S_{ADME}=AD\cdot AE=3\cdot4=12\left(cm^2\right)\)

ACMN là hình bình hành

=>MN=AC

=>MN=8(cm)

AMBN là hình thoi

=>\(S_{AMBN}=\dfrac{1}{2}\cdot AB\cdot MN=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)

d: Để AMBN là hình thoi thì \(\widehat{AMB}=90^0\)

=>AM\(\perp\)BC

Xét ΔABC có

AM là đường cao

AM là đường trung tuyến

Do đó: ΔABC cân tại A

=>AB=AC

 

Mình cần giúp mong các bạn giúp mình :((( mình đang vội 

 

7 tháng 10

M = 3\(x^2\) + y2 - 8\(x\) - 4y + 2\(xy\) + 2028

M = 2\(x^2\) + \(x^2\) + y2 - 8\(x\) - 4y + 2\(xy\) + 2028

M = (2\(x^2\) - 8\(x\) + 8) + (\(x^2\) + 2\(xy\) + y2) + 2020

 M = 2.(\(x^2\) - 4\(x\) + 4) + (\(x+y\))2 + 2020

M = 2.(\(x-2\))2 + (\(x+y\))2 + 2020

Vì (\(x-2\))2 ≥ 0 ∀ \(x\); 2.(\(x-2\))2 ≥ 0; (\(x+y\))2 \(\ge\) 0 \(\forall\) \(x;y\)

⇒ 2.(\(x-2\))2 + (\(x+y\))2 + 2020 ≥ 2020

Vậy Mmin = 2020 khi \(\left\{{}\begin{matrix}x-2=0\\x+y=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=2\\y=-x\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

Vậy giái trị nhỏ nhất của biểu thức M là 2020 xảy ra khi (\(x;y\))=(2; -2)