Cho hình chóp SABCD có đáy ABCD là hình bình hành. Gọi E, F, K lần
lượt là trung điểm của SB, SC, SD.
a) Tìm giao tuyến của (SAC) và (FBD).
b) Tìm giao tuyến của (SAD) và (SBC).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*) Với ba chữ số: 0; 1; 2, ta lập được các số:
102; 120; 201; 210
*) Với ba chữ số: 0; 1; 5 ta lập được các số sau:
105; 150; 501; 510
*) Với ba chữ số: 0; 2; 4 ta lập được các số sau:
204; 240; 402; 420
*) Với ba chữ số: 0; 3; 6 ta lập được các số sau:
306; 360; 603; 630
*) Với ba chữ số: 1; 2; 3 ta lập được các số sau:
123; 132; 213; 231; 312; 321
*) Với ba chữ số: 1; 2; 6 ta lập được các số sau:
126; 162; 216; 261; 612; 621
*) Với ba chữ số: 2; 4; 6 ta lập được các số sau:
246; 264; 426; 462; 624; 642
Vậy số các số có thể lập được là:
4 + 4 + 4 + 4 + 6 + 6 + 6 = 34 (số)
\(\left|\Omega\right|=C^3_{12}\)
a) Gọi biến cố A: "Lấy được cả 2 loại màu."
TH1: Lấy được 2 viên bi màu xanh: Có \(7.C^2_5=70\) cách.
TH2: Lấy được 2 viên bi màu đỏ: Có \(5.C^2_7=105\) cách.
\(\Rightarrow\) \(\left|A\right|=105+70=175\) cách
\(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{\left|\Omega\right|}=\dfrac{175}{C^3_{12}}=\dfrac{35}{44}\)
b) Gọi B: "Lấy được ít nhất 1 viên bi đỏ." \(\Rightarrow\overline{B}:\) "Không lấy được viên bi đỏ nào." hay "Bốc được 3 viên bi đều màu xanh."
\(\Rightarrow\left|\overline{B}\right|=C^3_5=10\)
\(\Rightarrow P\left(\overline{B}\right)=\dfrac{\left|\overline{B}\right|}{\left|\Omega\right|}=\dfrac{10}{C^3_{12}}=\dfrac{1}{22}\)
\(\Rightarrow P\left(B\right)=1-P\left(\overline{B}\right)=1-\dfrac{1}{22}=\dfrac{21}{22}\)
c) Gọi C: "Lấy được ít nhất 1 bi xanh." \(\Rightarrow\overline{C}:\) "Không lấy được bi xanh nào." hay "Lấy được 3 viên bi màu đỏ."
\(\Rightarrow\left|\overline{C}\right|=C^3_7=35\)
\(\Rightarrow P\left(\overline{C}\right)=\dfrac{\left|C\right|}{\left|\Omega\right|}=\dfrac{35}{C^3_{12}}=\dfrac{7}{44}\)
\(\Rightarrow P\left(C\right)=1-P\left(\overline{C}\right)=1-\dfrac{7}{44}=\dfrac{37}{44}\)
d) Gọi D: "Lấy được ít nhất 2 viên bi màu đỏ."
TH1: Lấy được 2 viên bi đỏ: Có \(C^2_7.5=105\) cách
TH2: Lấy được 3 viên bi đỏ: Có \(C^3_7=35\) cách
\(\Rightarrow\left|D\right|=105+35=140\)
\(\Rightarrow P\left(D\right)=\dfrac{\left|D\right|}{\left|\Omega\right|}=\dfrac{140}{C^3_{12}}=\dfrac{7}{11}\)
a: \(F\in SC\subset\left(SAC\right)\)
\(F\in\left(FBD\right)\)
Do đó: \(F\in\left(SAC\right)\cap\left(FBD\right)\)
Gọi O là giao điểm của AC và BD trong mp(ABCD)
=>\(O\in\left(SAC\right)\cap\left(FBD\right)\)
Do đó: \(\left(SAC\right)\cap\left(FBD\right)=FO\)
b: Xét (SAD) và (SBC) có
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC
Thank you Nguyễn Lê Phước Thịnh nhé