Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Trên ôtô, xe máy, nguời ta thường lắp một gương cầu lồi ở phía trước người lái xe để quan sát ở phía sau mà không lắp một gương phẳng do gương cầu lồi có vùng nhìn thấy rộng hơn gương phẳng, như vậy người lái xe có thể quan sát được vùng nhìn thấy rộng hơn như vậy lái xe đảm bảo an toàn hơn
Bởi vì để nghe được âm phản xạ phải cách âm trực tiếp khoảng 1/15 lần nên khoảng cách ngắn nhất để ta có thể nghe được tiếng vang là:
\(340.\frac{1}{15}:2\)=11,33(m)
11,33 m nhé
hok tốt, thấy mik đúng thì k cho mình nhé1
a có: xOy=120 (đề cho) và oAt= 60 (đề cho) ta lại có xOy+tAo=120 + 60 =180 (kề bù) mà 2 góc xOy và tAo ở vị trí trong cùng phía suy ra : oy // At mà AT' là tia đối của tia AT suy ra : tt' // oy
b) ta có xOy = xAt ( 2 góc đồng vị , oy // at ) mà xoy= 120 suy ra xAt=120 vì om là tia phân gica của xOy nên xom = moy = xoy/2 = 60 và on là tia phân giác của xAt xAn=nAt = xAt/2 = 60 mà xOy = xAt ( = 120 ) ta có xAn = xOm (= 60 ) mà 2 góc xAn và xOm ở vị tí đồng vị suy ra : An // Om
các số nhớ thêm độ đấy nhé
k đi
a) góc AOy = 120 0 => góc AOm = 600
Ta lại có góc AOt = 600 => At // Oy ( Cặp góc so le trong )
b) Om ko thể // An
Đánh số các người tham gia từ \(A_1\)đến \(A_{16}\).
Giả sử \(A_1\)thắng nhiều nhất.
Có: \(\frac{16\times15}{2}=120\)(ván đấu) suy ra \(A_1\)thắng \(\ge\frac{120}{16}=7,5\)
suy ra \(A_1\)thắng ít nhất \(8\)ván.
Không mất tính tổng quát, giả sử \(A_1\)thắng \(A_2,A_3,...,A_9\).
Giả sử trong những người này \(A_2\)thắng nhiều nhất.
\(A_2,...,A_9\)đánh \(\frac{8\times7}{2}=28\)(ván) suy ra \(A_2\)thắng \(\ge\frac{28}{8}=3,5\)
suy ra \(A_2\)thắng ít nhất \(4\)ván (khi đấu với \(A_3,...,A_9\))
Giả sử \(A_2\)thắng \(A_3,...,A_6\).
Giả sử \(A_3\)thắng nhiều nhất trong những người này.
\(A_3,...,A_6\)đánh \(\frac{4\times3}{2}=6\)(ván) suy ra \(A_3\)thắng \(\ge\frac{6}{4}=1,5\)
suy ra \(A_3\)thắng ít nhất \(2\)ván.
Giả sử \(A_3\)thắng \(A_4,A_5\).
Khi đó giả sử \(A_4\)thắng \(A_5\)thì ta có dãy thỏa mãn là: \(A_1,A_2,A_3,A_4,A_5\).
Ta có đpcm.
Một tam giác vuông có cạnh huyền bằng 26cm và có độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông?
A. 10 cm, 22 cm
B. 10 cm, 24 cm
C. 12 cm, 24 cm
D. 15 cm, 24 cm
Gọi độ dài 2 cạnh là \(x\), \(y\)( \(x\), \(y\)> 0 )
Theo định lý Pitago ta có : \(\frac{x}{5}=\frac{y}{12}\)\(\Rightarrow\)\(\frac{x^2}{25}=\frac{y^2}{144}=\frac{x^2+y^2}{25+144}\)
= \(\frac{676}{169}=4\)
\(\Leftrightarrow\)\(x^2=25.4\)
\(\Leftrightarrow\)\(x^2=100\)
\(\Leftrightarrow\)\(x=10\)cm
Ta lại có :
\(\Leftrightarrow\)\(y^2=144.4\)
\(\Leftrightarrow\)\(y^2=576\)
\(\Leftrightarrow\)\(y=24\)
Vậy ...................
=> Chọn B
Hok tốt
a, Xét ΔAIC vuông tại I và ΔBIC vuông tại I có:
CA=CB (=10 cm)
CI là cạnh chung
⇒ΔAIC=ΔBIC (trường hợp đặc biệt ,cạnh huyền, cạnh góc vuông)
⇒IA=IB (2 cạnh tương ứng)
b, Ta có: IA+IB=AB
mà AB=12 cm
IA=IB (cmt)
⇒2IA=12
⇒IA=12÷2=6 cm
Ta có: ΔAIC vuông tại I có:
IC²+IA²=CA² (định lí Py-ta-go)
mà IA=6 cm(gt)
CA=10 cm (gt)
⇒IC²+6²=10²
⇒IC²+36=100
⇒IC²=100-36=64
⇒IC=8 cm
c, Ta có:CA=CB (10 cm)
⇒ΔABC cân tại C
⇒∠CAB=∠CBA (2 cạnh ở đáy củaΔ cân )
Ta có: IH⊥AC tại H (gt)⇒ΔAIH vuông tại H
IK⊥BC tại K (gt)⇒ΔBIK vuông tại K
Xét ΔAIH vuông tại H và ΔBIK vuông tại K có:
AI=IB (cmt)
∠CAB=∠CBA (cmt)
⇒ΔAIH=ΔBIK (trường hợp đặc biệt,canh huyền,góc nhọn)
⇒IH=IK (2 cạnh tương ứng)
Số 1 vừa là số tự nhiên, vừa là số nguyên, vừa là số hữu tỉ
c, i=50oi=50o
=> i′=50oi′=50o
=> SIR=i+i′=50o+50o=100o
( Lưu ý : o là độ )
a) Vẽ được ảnh của điểm sáng S:
b) Vẽ được tia phản xạ IR:
c) Theo định luật phản xạ ánh sáng: i=i’=50o
Ta có: gócSIR=i+i’=50o+50o=100o
d) Vì SI = S’I nên SI + IR = S’I + IR
Mà S’I là đường kéo dài của tia phản xạ IR nên S’, I, R là đường thẳng. Nên nó sẽ ngắn nhất.
Vậy đường truyền của tia sáng S → I → R là ngắn nhất.