Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:
C = \(-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\widehat{xOy}+\widehat{yOz}=180^o\) (2 góc kề bù)
\(\Rightarrow\widehat{yOz}=180^o-\widehat{xOy}\)
\(\Rightarrow\widehat{yOz}=180^o-80^o\)
\(\Rightarrow\widehat{yOz}=100^o\)
Ta lại có :
\(\widehat{tOz}=\widehat{tOy}+\widehat{yOz}\)
mà \(\widehat{tOy}=\dfrac{1}{2}\widehat{xOy}=\dfrac{1}{2}.80^o=40^o\) (Ot là phân giác góc xOy)
\(\Rightarrow\widehat{tOz}=40^o+100^o\)
\(\Rightarrow\widehat{tOz}=140^o\)
\(\widehat{xOt}=\dfrac{1}{2}\widehat{xOy}=\dfrac{1}{2}.80^o=40^o\) (Ot là phân giác góc xOy)
\(x=7\Rightarrow8=x+1\left(1\right)\)
Thay \(1\) vào \(F\) ta có:
\(F=x^{2006}-\left(x+1\right)^{2005}+\left(x+1\right)^{2004}-...+\left(x+1\right)x^2-\left(x+1\right)x-5\)
\(F=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\)
\(F=-7-5\)
\(\Rightarrow F=-12\)
\(\left(1-\dfrac{1}{1+2}\right)\cdot\left(1-\dfrac{1}{1+2+3}\right)\cdot\left(\dfrac{1}{1+2+3+...+2006}\right)\)
\(=\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{6}\right)\cdot\left\{\dfrac{1}{\left(2006+1\right)\left[\left(2006-1\right):1+1\right]}\right\}\)
\(=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot\dfrac{1}{2007\cdot2006}\)
\(=\dfrac{10}{18}\cdot\dfrac{1}{4026042}\)
\(=\dfrac{5}{9}\cdot\dfrac{1}{4026042}\)
\(=\dfrac{5}{36234378}\)
a) \(x+\left|x-2\right|=7\)
\(\Leftrightarrow\left|x-2\right|=7-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=7-x\\x-2=-7+x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=9\\0x=-5\left(loại\right)\end{matrix}\right.\) \(\Leftrightarrow x=\dfrac{9}{2}\)
b) \(\left|x-3\right|+\left|x-5\right|=9\left(1\right)\)
Ta thấy :
\(\left|x-3\right|+\left|x-5\right|\ge\left|x-3+x-5\right|=\left|2x-8\right|\)
\(pt\left(1\right)\Leftrightarrow\left|2x-8\right|=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-8=9\\2x-8=-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=17\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c) \(\left|x-1\right|+\left|x+1\right|=10\left(1\right)\)
Ta thấy :
\(\left|x-1\right|+\left|x+1\right|\ge\left|x-1+x+1\right|=\left|2x\right|\)
\(pt\left(1\right)\Leftrightarrow\left|2x\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
a) \(x+\left|x-2\right|=7\)
\(\Rightarrow\left\{{}\begin{matrix}x+\left(x-2\right)=7\left(x\ge2\right)\\x-\left(x-2\right)=7\left(x< 2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+x-2=7\\x-x+2=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-2=7\\2=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=9\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow2x=-9\)
\(\Rightarrow x=-\dfrac{9}{2}\)
\(5^{x-3}=25^9\)
\(\Rightarrow5^{x-3}=\left(5^2\right)^9\)
\(\Rightarrow5^{x-3}=5^{18}\)
\(\Rightarrow x-3=18\)
\(\Rightarrow x=18+3\)
\(\Rightarrow x=21\)
Vậy: x=21
\(5x^2=1620\)
\(\Rightarrow x^2=1620:5\)
\(\Rightarrow x^2=324\)
\(\Rightarrow x^2=18^2\)
\(\Rightarrow\left[{}\begin{matrix}x=18\\x=-18\end{matrix}\right.\)
Vậy: x=18 hoặc x=-18
\(5^x+10x=625+10x\)
\(\Rightarrow5^x=625+10x-10x\)
\(\Rightarrow5^x=625\)
\(\Rightarrow5^x=5^4\)
\(\Rightarrow x=4\)
Vậy x=4
\(2^x:8=4\)
\(\Rightarrow2^x=4\cdot8\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(x=5\)
Vậy: x=5
\(2^x:8=4\)
\(\Rightarrow2^x=4.8\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^5=32\)
\(\Rightarrow x=5\)
A = 1 + 3 + 5 + ... + 299
a) Số số hạng của A:
(299 - 1) : 2 + 1 = 150 (số)
A = (299 + 1) . 150 : 2 = 22500
b) Số hạng thứ 74 của A:
1 + 73 × 2 = 147
\(C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\)
mà \(-2\left|\dfrac{1}{3}x+4\right|\le0,\forall x\)
\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\le\dfrac{5}{3}\)
\(\Rightarrow GTLN\left(C\right)=\dfrac{5}{3}\left(tạix=-12\right)\)