K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021

x2 + 2x + 1 = (x + 2). căn bậc 2 của x2 + 1

Vậy ta có:

(x2 + 2x + 1) . (x2 + 1) = (x + 2).(x2 + 1)

(x2 + 2x + 1) . (x2 + 1) = x.(x2 + 1) + 2.(x2 + 1)

(x2 + 2x + 1) . (x2 + 1) = x3 + x + 2x2 + 2

= x2.(x2 + 1) + 2x.(x2 + 1) + x2 + 1 = x3 + x + 2x2 + 2

= x4 + x2 + 2x3 + 2x + x2 + 1 = x3 + x + 2x2 + 2

= x4 + 2x2 + 2x + 2x3 + 1 = x3 + x + 2x2 + 2

= x4 + 2x + 2x3 + 1 = x3 + x + 2

DD
21 tháng 12 2021

\(x^2+2x+1=\left(x+2\right)\sqrt{x^2+1}\)

\(\Leftrightarrow x^2-3=\left(x+2\right)\left(\sqrt{x^2+1}-2\right)\)

\(\Leftrightarrow x^2-3=\left(x+2\right)\frac{x^2+1-4}{\sqrt{x^2+1}+2}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-3=0\\1=\frac{x+2}{\sqrt{x^2+1}+2}\end{cases}}\)

\(\Leftrightarrow x^2-3=0\)

\(\Leftrightarrow x=\pm\sqrt{3}\)

21 tháng 12 2021

a, Hoành độ giao điểm (P) ; (d) thỏa mãn pt 

\(x^2=2x-m\Leftrightarrow x^2-2x+m=0\)

Để pt có 2 nghiệm pb khi \(\Delta'=1-m>0\Leftrightarrow m< 1\)

Vậy với m < 1 thì (P) cắt (d) tại 2 điểm pb 

b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m\end{cases}}\)

Ta có : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1^2x_2^2}=2\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=2\)Thay vào ta có : 

\(\Leftrightarrow\frac{4-2m}{m^2}=2\Leftrightarrow4-2m=2m^2\Leftrightarrow2m^2+2m-4=0\)

mà a + b + c = 0 => 2 + 2 - 4 = 0 

vậy pt có 2 nghiệm 

\(m_1=1\left(ktm\right);m_2=-2\left(tm\right)\)

20 tháng 12 2021

one cộng one bằng two

two cộng one bằng three ok

21 tháng 12 2021

Áp dụng BĐT Cô-si cho hai số dương x và y, ta có: \(\sqrt{xy}\le\frac{x+y}{2}\)

\(\Leftrightarrow\sqrt{xy}+y\le\frac{x+y}{2}+y=\frac{x+y+2y}{2}=\frac{x+3y}{2}\)

\(\Leftrightarrow\frac{x+3y}{\sqrt{xy}+y}\ge\frac{x+3y}{\frac{x+3y}{2}}=2\)

Dấu "=" xảy ra khi \(x=y\)

Vậy GTNN của P là 2 khi \(x=y\)

20 tháng 12 2021

\(S=a+\frac{1}{a}=\frac{a}{9}+\frac{8a}{9}>2\sqrt{\frac{a}{9}.\frac{1}{a}}+\frac{8a}{9}=2.\frac{1}{3}+\frac{8a}{a}>\frac{2}{3}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}.\)

\(S_{min}=\frac{10}{3}=a^2=9=a=3\)

20 tháng 12 2021

\(S=a+\frac{1}{a}=a+\frac{9}{a}-\frac{8}{a}\)

\(=\left(a+\frac{9}{a}\right)-\frac{8}{a}\ge2\sqrt{a.\frac{9}{a}}-\frac{8}{a}\)(BĐT Cauchy)

\(=6-\frac{8}{a}\)

Vì \(a\ge3\Rightarrow\frac{8}{a}\le\frac{8}{3}\Rightarrow-\frac{8}{a}\ge-\frac{8}{3}\)

=> \(6-\frac{8}{a}\ge6-\frac{8}{3}=\frac{10}{3}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=\frac{9}{a}\\a=3\end{cases}}\Leftrightarrow a=3\)

Vậy MIN S = 10/3 khi a = 3

20 tháng 12 2021

... toàn toán lớp 9 nhiều người học olm lớp 9 thế

NM
19 tháng 12 2021

Cho đường thẳng y = ( m – 3) x + n ( d) . Tìm m và n để :

a) Đường thẳng (d) cắt đường thẳng y = 12 𝑥− 32 khi \(m-3\ne12\Leftrightarrow m\ne15\)

b) Đường thẳng (d) song song với đường thẳng y = −32 𝑥+ 3 \(\text{ }\text{ }\text{ }\hept{\begin{cases}m-3=-32\\n\ne3\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-29\\n\ne3\end{cases}}\)

c) Đường thẳng (d) trùng với đường thẳng y = 2x + 3  khi \(\hept{\begin{cases}m-3=2\\n=3\end{cases}\Leftrightarrow\hept{\begin{cases}m=5\\n=3\end{cases}}}\)

19 tháng 12 2021
Chịu khó thế