Giúp mình ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chúng đều được định nghĩa dựa trên các cạnh của tam giác vuông và góc nhọn trong tam giác đó. Sin: Tỷ số giữa cạnh đối diện với góc nhọn và cạnh huyền của tam giác vuông. Cos: Tỷ số giữa cạnh kề với góc nhọn và cạnh huyền của tam giác vuông. Tan: Tỷ số giữa cạnh đối diện và cạnh kề của góc nhọn trong tam giác vuông.
@ ánh lê Copy phải ghi Tk nhé!
Tk = Tham khảo
A = {20; 30; 40; 50; 60; 70}
A = {x ∈ N|12 < x ≤ 70 và x ⋮ 10}
ĐKXĐ: x>=0
\(\dfrac{2\sqrt{x}-6}{x-\sqrt{x}+1}< 0\)
mà \(x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\) thỏa mãn ĐKXĐ
nên \(2\sqrt{x}-6< 0\)
=>\(\sqrt{x}< 3\)
=>0<=x<9
3 x 3 - 8 x 6
= 9 - 48
= - 39
2 x 15 + 6 - 7
= 30 + 6 - 7
= 36 - 7
= 29
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-2\\y\ne-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x}{x+2}-\dfrac{3y}{y+1}=-4\\\dfrac{x}{x+2}+\dfrac{2y}{y+1}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2x+4-4}{x+2}-\dfrac{3y+3-3}{y+1}=-4\\\dfrac{x+2-2}{x+2}+\dfrac{2y+2-2}{y+1}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2-\dfrac{4}{x+2}-3+\dfrac{3}{y+1}=-4\\1-\dfrac{2}{x+2}+2-\dfrac{2}{y+1}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{4}{x+2}+\dfrac{3}{y+1}=-4-2+3=-6+3=-3\\-\dfrac{2}{x+2}-\dfrac{2}{y+1}=\dfrac{1}{3}-3=-\dfrac{8}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{-4}{x+2}+\dfrac{3}{y+1}=-3\\\dfrac{-4}{x+2}-\dfrac{4}{y+1}=-\dfrac{16}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-4}{x+2}+\dfrac{3}{y+1}+\dfrac{4}{x+2}+\dfrac{4}{y+1}=-3+\dfrac{16}{3}\\\dfrac{-4}{x+2}-\dfrac{4}{y+1}=-\dfrac{16}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{7}{y+1}=\dfrac{7}{3}\\\dfrac{1}{x+2}+\dfrac{1}{y+1}=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+1=3\\\dfrac{1}{x+2}=\dfrac{4}{3}-\dfrac{1}{3}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2\\x=-1\end{matrix}\right.\left(nhận\right)\)
50-(20+40)
=50-60=-10
\(30+\left(31+69\right)-210\)
\(=30+100-210\)
\(=30-110=-80\)
ĐKXĐ: x<>-2
\(\dfrac{x-3}{x+2}>=0\)
TH1: \(\left\{{}\begin{matrix}x-3>=0\\x+2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\x>-2\end{matrix}\right.\)
=>x>=3
TH2: \(\left\{{}\begin{matrix}x-3< =0\\x+2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =3\\x< -2\end{matrix}\right.\)
=>x<-2
Bài 7:
\(\dfrac{x-2}{5}=\dfrac{-2}{2y+1}\)
=>\(\left(x-2\right)\left(2y+1\right)=5\cdot\left(-2\right)=-10\)
mà 2y+1 lẻ
nên \(\left(x-2;2y+1\right)\in\left\{\left(10;-1\right);\left(-10;1\right);\left(2;-5\right);\left(-2;5\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(12;-1\right);\left(-8;0\right);\left(4;-3\right);\left(0;2\right)\right\}\)
Bài 6:
\(\dfrac{1}{20}+\dfrac{1}{44}+\dfrac{1}{70}+...+\dfrac{2}{x\left(x+3\right)}=\dfrac{101}{770}\)
=>\(\dfrac{2}{40}+\dfrac{2}{88}+\dfrac{2}{140}+...+\dfrac{2}{x\left(x+3\right)}=\dfrac{101}{770}\)
=>\(\dfrac{2}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{101}{770}\)
=>\(\dfrac{2}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{770}\)
=>\(\dfrac{2}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{770}\)
=>\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{101}{770}:\dfrac{2}{3}=\dfrac{101}{770}\cdot\dfrac{3}{2}=\dfrac{303}{1540}\)
=>\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}=\dfrac{1}{308}\)
=>x+3=308
=>x=305
Bài 8:
a: \(\left(2x-1\right)^2+4>=4\forall x\)
=>\(B=\dfrac{20}{\left(2x-1\right)^2+4}< =\dfrac{20}{4}=5\forall x\)
Dấu '=' xảy ra khi 2x-1=0
=>\(x=\dfrac{1}{2}\)
b: \(x^2+1>=1\forall x\)
=>\(\left(x^2+1\right)^2>=1^2=1\forall x\)
=>\(\left(x^2+1\right)^2+5>=1+5=6\forall x\)
=>\(C=\dfrac{10}{\left(x^2+1\right)^2+5}< =\dfrac{10}{6}=\dfrac{5}{3}\forall x\)
Dấu '=' xảy ra khi x=0
a: Xét ΔABC có AD là phân giác
nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)
=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{120}{2}\right)=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60\)
=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot\dfrac{1}{2}=\dfrac{AB\cdot AC}{AB+AC}\)
=>\(\dfrac{1}{AD}=\dfrac{AB+AC}{AB\cdot AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\)
b: \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)
=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos45=\dfrac{2\cdot AB\cdot AC\sqrt{2}}{2\left(AB+AC\right)}=\dfrac{AB\cdot AC\cdot\sqrt{2}}{AB+AC}\)
=>\(\dfrac{1}{AD}=\dfrac{AB+AC}{AB\cdot AC}\cdot\dfrac{1}{\sqrt{2}}\)
=>\(\dfrac{\sqrt{2}}{AD}=\dfrac{AB+AC}{AB\cdot AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\)
c: \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)
=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{60}{2}\right)\)
=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos30=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot\dfrac{\sqrt{3}}{2}\)
=>\(\dfrac{AD}{\sqrt{3}}=\dfrac{AB\cdot AC}{AB+AC}\)
=>\(\dfrac{\sqrt{3}}{AD}=\dfrac{AB+AC}{AB\cdot AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\)