cho đa thức A(x)=x3- x2 + ax+ b
và B(x)= x2-2x+3
tìm a,b để A(x) : B(x) dư 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{\dfrac{-6}{7}+\dfrac{6}{19}-\dfrac{6}{31}}{\dfrac{9}{7}-\dfrac{9}{19}+\dfrac{9}{31}}\)
= \(\dfrac{-6.\left(\dfrac{1}{7}-\dfrac{1}{19}+\dfrac{1}{31}\right)}{9.\left(\dfrac{1}{7}-\dfrac{1}{19}+\dfrac{1}{31}\right)}\)
= - \(\dfrac{2}{3}\)
b, \(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}\)+ \(\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)
= \(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4.(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11})}\) + \(\dfrac{3.(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625})}{4.\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
= \(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)
= 1
a) \(L=4-8+12-16+20-24+...+220-224\)
\(\Rightarrow L=\left(-4\right)+\left(-4\right)+\left(-4\right)+...+\left(-4\right)\) (có 28 số -4)
\(\Rightarrow L=\left(-4\right).28=-112\)
c) \(O=6-12+18-24+30-36+354-360\)
\(\Rightarrow O=\left(-6\right)+\left(-6\right)+\left(-6\right)+...+\left(-6\right)\) (có 30 số -6)
\(\Rightarrow O=\left(-6\right).30=-180\)
e) \(P=3-6+9-12+15-18+...+147-150\)
\(\Rightarrow P=\left(-3\right)+\left(-3\right)+\left(-3\right)+...+\left(-3\right)\) (có 25 số -3)
\(\Rightarrow P=\left(-3\right).25=-75\)
b)
S = 3 + 5 - 7 - 9 + 11 + 13 - 15 - 17 + ... + 243 + 245 - 247 - 249
S = (3 - 7) + (5 - 9) + ... + (243 - 247) + (245 - 249)
S = (-4) + (-4) + ... + (-4) + (-4)
Tổng trên có số số hạng là : [(249 - 3) : 2 + 1] : 2 = 62 (số hạng)
Suy ra S = (-4) x 62 = -248
d)
E = 2 - 4 + 6 - 8 + ... + 218 - 220
E = (2 - 4) + (6 - 8) + ... + (218 - 220)
E = (-2) + (-2) + ... + (-2)
Tổng trên có số số hạng là: [(220 - 2) : 2 + 1] : 2 = 55 (số hạng)
Suy ra E = (-2) x 55 = -110
Bài 1:
a, \(\dfrac{2}{3}\) + \(\dfrac{1}{5}\). \(\dfrac{10}{7}\)
= \(\dfrac{2}{3}\) + \(\dfrac{2}{7}\)
= \(\dfrac{20}{21}\)
b, \(\dfrac{7}{12}\) - \(\dfrac{27}{7}\). \(\dfrac{1}{18}\)
= \(\dfrac{7}{12}\) - \(\dfrac{3}{14}\)
= \(\dfrac{31}{84}\)
c, \(\dfrac{3}{10}\). \(\dfrac{-5}{6}\) - \(\dfrac{1}{8}\)
= - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\)
= - \(\dfrac{3}{8}\)
d, - \(\dfrac{4}{9}\): \(\dfrac{8}{3}\) + \(\dfrac{1}{18}\)
= - \(\dfrac{1}{6}\) + \(\dfrac{1}{18}\)
= - \(\dfrac{1}{9}\)
e, {[(\(\dfrac{1}{2}\) - \(\dfrac{2}{3}\))2 : 2 ] - 1}. \(\dfrac{4}{5}\)
= {[ (-\(\dfrac{1}{6}\))2 : 2] - 1}. \(\dfrac{4}{5}\)
= { [\(\dfrac{1}{36}\) : 2] - 1}. \(\dfrac{4}{5}\)
= { \(\dfrac{1}{72}\) - 1}. \(\dfrac{4}{5}\)
=- \(\dfrac{71}{72}\).\(\dfrac{4}{5}\)
= -\(\dfrac{71}{90}\)
b) Vì BI vuông góc với AC tại I, nên I thuộc AC.
Vì DK vuông góc với AC tại K, nên K thuộc AC.
Vì O là giao điểm của AC và BD nên O thuộc AC.
Suy ra I, O, K là các điểm thuộc AC; từ đó ba điểm I, O, K thẳng hàng
\(2.\left(x^2+\dfrac{1}{2}y\right)\left(2x^2-y\right)\)
\(=\left(2x^2+y\right)\left(2x^2-y\right)\)
\(=\left(2x^2\right)^2-y^2\) Ta sử dụng \(\left[\left(a-b\right)\left(a+b\right)=a^2-b^2\right]\)
\(=2^2\left(x^2\right)^2-y^2\)
\(=2^2x^4-y^2\)
\(=4x^4-y^2\)
Vậy khai triển của biểu thức \(2.\left(2x^2+\dfrac{1}{2}y\right)\left(2x^2-y\right)\) là: \(4x^4-y^2\)
\(2\left(x^2+\dfrac{1}{2}\right)\left(2x^2-y\right)\)
\(=2.2.\left(x^2+\dfrac{1}{2}\right)\left(x^2-\dfrac{1}{2}\right)\)
\(=4.\left(x^4-\dfrac{1}{4}\right)\)
a,(0,8)5:(0,4)6 = (\(\dfrac{0,8}{0,4}\))5 : 0,4 = 25:0,4 = 80
b, (-25)7: 323 - \(\dfrac{6103515625}{3276}\) = - 186264,5149
c, \(\dfrac{4^2.4^3}{2^{10}}\) = \(\dfrac{4^5}{2^{10}}\) = \(\dfrac{2^{10}}{2^{10}}\) = 1
d, \(\dfrac{9^5.5^7}{45^7}\) = \(\dfrac{9^5.5^7}{9^7.5^7}\) = \(\dfrac{1}{81}\)
\(\dfrac{\left(0.8\right)^5}{\left(0.4\right)^4}\)=\(\dfrac{\left(2.0,4\right)^5}{\left(0.4^4\right)}\)=\(\dfrac{2^5.\left(0.4\right)^5}{\left(0,4\right)^4}\)=\(2^5\).\(\left(0.4\right)^1\)=12,8
b)câu b không biết có sai đề không nhưng đáp án câu b là -186264,5149
c) \(\dfrac{4^2.4^3}{2^{10}}\)=\(\dfrac{4^5}{\left(2^2\right)^5}\)=\(\dfrac{4^5}{4^5}\)=1
d)\(\dfrac{9^5.5^7}{45^7}\)=\(\dfrac{9^5.5^5.5^2}{45^7}\)=\(\dfrac{45^5.5^2}{45^7}\)=\(\dfrac{5^2}{45^2}\)=\(\left(\dfrac{5}{45}\right)^2\)=\(\left(\dfrac{1}{9}\right)^2\)=\(\dfrac{1}{81}\)
Hôm nay olm.vn sẽ hướng dẫn các em cách giải phương trình nghiệm nguyên bằng nguyên lí kẹp. Cấu trúc đề thi hsg, thi chuyên thi violympic.
(3n + 1)2 = 9n2 + 2n + 1 < 9n2 + 3n + 4 \(\forall\) n \(\in\) N (1)
(3n + 2)2 = (3n + 2).(3n +2) = 9n2 + 12n + 4
⇒(3n + 2)2 ≥ 9n2 + 3n + 4 \(\forall\) n \(\in\) N (2)
Kết hợp (1) và (2) ta có: (3n +1)2 < 9n2 + 3n + 4 ≤ (3n + 2)2
Vì (3n + 1)2 và (3n +2)2 là hai số chính phương liên tiếp nên
9n2 + 3n + 4 là số chính phương khi và chỉ khi:
9n2 + 3n + 4 = (3n + 2)2 ⇒ 9n2 + 3n + 4 = 9n2 + 12n + 4
9n2 + 12n + 4 - 9n2 - 3n - 4 = 9n = 0 ⇒ n = 0
Vậy với n = 0 thì 9n2 + 3n + 4 là số chính phương.
Hôm nay olm.vn sẽ hướng dẫn các em giải toán nâng cao lớp 7 bằng phương pháp hệ số bất định em nhé.
Vì ( \(x^3\) - \(x^2\) + a\(x\) + b): (\(x^2\) - 2\(x\) + 3) dư 6
Ta thấy đa thức bị chia bậc ba, đa thức chia bậc hai nên thương có dạng: c\(x\) + d vì hệ số cao nhất của đa thức bị chia là 1 nên c = 1
Theo bài ra ta có:
\(x^3\) - \(x^2\) + a\(x\) + b = (\(x^2\) - 2\(x\) + 3)(\(x\) + d) + 6
\(x^3\) - \(x^2\) + a\(x\) + b = \(x^3\) + d\(x^2\) - 2\(x^2\) - 2d\(x\) + 3\(x\) + 3d + 6
\(x^3\) - \(x^2\) + a\(x\) + b = \(x^{3^{ }}\) + (d - 2)\(x^2\) + (3 - 2d)\(x\) + 3d + 6
⇒ \(\left\{{}\begin{matrix}d-2=-1\\a=3-2d\\b=3d+6\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}d=1\\a=3-2\\b=3+6\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}d=1\\a=1\\b=9\end{matrix}\right.\)
Vậy a = 1; b = 9