K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

A B C M H K I

a/

Ta có A và M cùng nhìn BK dưới 1 góc vuông => A và M nằm trên đường tròn đường kính BK => ABMK là tứ giác nội tiếp đường tròn đường kính BK

Xét \(\Delta AMC\) và \(\Delta BKC\) có

\(\widehat{ACB}\) chung

\(\widehat{KBC}=\widehat{MAC}\) (góc nội tiếp đường tròn cùng chắn cung KM)

\(\Rightarrow\Delta BKC\) đồng dạng với \(\Delta AMC\) (g.g.g)

Xét tg vuông AHM có

HM=HA => tg AHM vuông cân tại H \(\Rightarrow\widehat{AMB}=45^o\)

Ta có \(\widehat{AKB}=\widehat{AMB}=45^o\) (góc nội tiếp đường tròn cùng chắn cung AB)

Xét tg vuông ABK có

\(\widehat{ABK}=90^o-\widehat{AKB}=90^o-45^o=45^o\)

\(\Rightarrow\widehat{ABK}=\widehat{AKB}=45^o\)=> tg ABK vuông cân tại A => AB=AK

\(\Rightarrow BK=\sqrt{AB^2+AK^2}=\sqrt{AB^2+AB^2}=AB\sqrt{2}\) (Pitago)

b/

Xét tg vuông cân ABK có

IB=IK (gt) => AI là trung tuyến => \(AI\perp BK\) (trong tg cân đường trung tuyến xp từ đỉnh đồng thời là đường cao)

=> I và H cùng nhìn AB dưới 1 góc vuông => ABHI là tứ giác nội tiếp

\(\Rightarrow\widehat{AHI}=\widehat{ABK}\) (góc nội tiếp cùng chắn cung AI)

Mà \(\widehat{ABK}=45^o\left(cmt\right)\Rightarrow\widehat{AHI}=45^o\)

27 tháng 12 2021

Sử dụng tính chất tam giác đồng dạng và bất đẳng thức tam giác.

Dựng điểm E sao cho tam giác BCD đồng dạng với tam giác BEA. Khi đó, theo tính chất của tam giác đồng dạng, ta có

\(\frac{BA}{EA}=\frac{BD}{CD}\)

Suy ra \(BA.CD=EA.BD\left(1\right)\)

Mặt khác, tam giác EBC và tam giác ABD cũng đồng dạng do có

\(\frac{BA}{BD}=\frac{BE}{BC}\) và góc EBC= góc ABD

Từ đó

\(\frac{EC}{BC}=\frac{AD}{BD}\)

Suy ra

\(AD.BC=EC.BD\left(2\right)\)

Cộng (1) và (2) ta suy ra

\(AB.CD+AD.BC=BD.\left(EA+EC\right)\)

Áp dụng bất đẳng thức tam giác ta suy ra \(AB.CD+AD>BC\ge AC>BD\)

Dấu bằng xảy ra khi và chỉ khi tứ giác nội tiếp trong một đường tròn và trở thành định lý Ptoleme.

24 tháng 12 2021

TL :

B NHÉ

HT

@@@@@@@@@@@@@@@@@@

24 tháng 12 2021

Ta có: \(\frac{1}{2\sqrt{3}-5}-\frac{1}{2\sqrt{3}+5}\)

\(=\frac{2\sqrt{3}+5-2\sqrt{3}+5}{\left(2\sqrt{3}-5\right)\left(2\sqrt{3}+5\right)}\)

\(=\frac{10}{\left(2\sqrt{3}\right)^2-5^2}\)

\(=\frac{10}{12-25}=\frac{-10}{13}\)

\(\Rightarrow\)Chọn A

24 tháng 12 2021

\(\sqrt{-2\sqrt{6}+5}=\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)(vì \(\sqrt{3}-\sqrt{2}>0\))

\(\Rightarrow\)Chọn C

24 tháng 12 2021

TL :

Đáp án B 

HT'@@@@@@@@@

24 tháng 12 2021

Căn xác định khi biểu thức trong căn lớn hơn bằng 0, mà x2 luôn dương nên 3x+5 lớn hơn bằng 0. => chọn C

31 tháng 12 2021

Answer:

\(\hept{\begin{cases}5x+3y=-7\\3x-y=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}5x+3y=-7\left(1\right)\\9x-3y=-24\left(2\right)\end{cases}}\)

Cộng theo vế (1) và (2):

\(\left(5x+3y\right)+\left(9x-3y\right)=-7+\left(-24\right)\)

\(\Leftrightarrow14x=-31\)

\(\Leftrightarrow x=\frac{-31}{14}\)

Thay \(x=\frac{-31}{14}\) vào (1) \(\Rightarrow y=\frac{19}{14}\)

24 tháng 12 2021

e đang cần gấp mn ạ