Giải phương trình
\(\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}=\dfrac{1}{2}\left(x+y+z\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nghiệm của x - 2 là 2
A chia hết cho x - 2 nên ta thay nghiệm của x - 2 vào A ta có:
\(A=a\cdot2^3+b\cdot2^2+2=0=>8a+4a+c=0\) (1)
A(x) chia `x^2+x-2` dư 3x+2 nên A(x) - (3x+2) chia hết cho `x^2+x-2`
Ta có nghiệm của là: \(x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Lần lượt thay `x=1` và `x=-2` vào A(x) - (3x+2) ta có:
\(A=a\cdot1^3+b\cdot1^2+c-\left(3\cdot1+2\right)=0\Rightarrow a+b+c=5\) (2)
\(A=a\cdot\left(-2\right)^3+b\cdot\left(-2\right)^2+c-\left(3\cdot-2+2\right)=0=>-8a+4b+c=-4\) (3)
Từ (1) , (2) và (3) ta có hpt: \(\left\{{}\begin{matrix}8a+4b+c=0\\a+b+c=5\\-8a+4b+c=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{4}\\b=-\dfrac{9}{4}\\c=7\end{matrix}\right.\)
Để pt có nghiệm duy nhất thì: \(-\dfrac{2}{m}\ne\dfrac{1}{1}\Leftrightarrow m\ne-2\)
\(\left\{{}\begin{matrix}-2x+y=-3m-1\\mx+y=m^2+m+3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)y=m^2+m+3+3m+1\\-2x+y=-3m-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m^2+4m+4}{m+2}\\-2x+y=-3m-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\left(m+2\right)^2}{m+2}=m+2\\-2x+\left(m+2\right)=-3m-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=m+2\\2x=m+2+3m+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=m+2\\2x=4m+3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=m+2\\x=\dfrac{4m+2}{2}\end{matrix}\right.\)
Mà: \(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4m+2}{3}>0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m>-2\\m>-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m>-2\end{matrix}\right.\Leftrightarrow m>-\dfrac{1}{2}\)
\(2x^4+ax^3+3x^2+4x+b⋮x^2-4x+4\)
=>\(2x^4-8x^3+8x^2+\left(a+8\right)x^3-\left(4a+32\right)x^2+\left(4a+32\right)x+\left(4a+27\right)x^2-4\cdot\left(4a+27\right)x+4\cdot\left(4a+27\right)+\left(12a+80\right)x+b-16a-108⋮x^2-4x+4\)
=>\(\left\{{}\begin{matrix}12a+80=0\\b-16a-108=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=-\dfrac{20}{3}\\b=16a+108=\dfrac{4}{3}\end{matrix}\right.\)
a) ĐKXĐ: `x\ne3;x\ne-1`
`\frac{x}{2(x-3)}+\frac{x}{2x+2}=\frac{2x}{(x+1)(x-3)}`
`\Leftrightarrow \frac{x(x+1)}{2(x+1)(x-3)}+\frac{x(x-3)}{2(x+1)(x-3)}=\frac{4x}{2x(x+1)(x-3)}`
`\Rightarrow x(x+1)+x(x-3)=4x`
`\Leftrightarrow 2x^2-2x=4x`
`\Leftrightarrow 2x^2-6x=0`
`\Leftrightarrow 2x(x-3)=0`
\(\Leftrightarrow \left[\begin{array}{} x=0(tm)\\x=3 (ktm)\end{array} \right.\)
b) ĐKXĐ: `x\ne-2`
`\frac{3x}{x^2-2x+4}=\frac{3}{x+2}+\frac{72}{x^3+8}`
`\Leftrightarrow \frac{3x(x+2)}{(x+2)(x^2-2x+4)}=\frac{3(x^2-2x+4)}{(x+2)(x^2-2x+4)}+\frac{72}{(x+2)(x^2-2x+4)}`
`\Rightarrow 3x^2+6x=3x^2-6x+12+72`
`\Leftrightarrow 12x=84`
`\Leftrightarrow x=7(tm)`
$\mathtt{Toru}$
a)
\(\dfrac{4}{x+3}-\dfrac{3}{x-5}=0\left(x\ne-3;x\ne5\right)\\ \Leftrightarrow\dfrac{4\left(x-5\right)}{\left(x+3\right)\left(x-5\right)}-\dfrac{3\left(x+3\right)}{\left(x+3\right)\left(x-5\right)}=0\\ \Leftrightarrow4\left(x-5\right)-3\left(x+3\right)=0\\ \Leftrightarrow4x-20-3x-9=0\\ \Leftrightarrow x-29=0\\ \Leftrightarrow x=29\left(tm\right)\)
b)
\(\dfrac{1}{x+2}-\dfrac{1}{x-2}=\dfrac{3x-12}{x^2-4}\left(x\ne\pm2\right)\\ \Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x-2}=\dfrac{3x-12}{\left(x+2\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{x+2}{\left(x+2\right)\left(x-2\right)}=\dfrac{3x-12}{\left(x+2\right)\left(x-2\right)}\\ \Leftrightarrow x-2-x-2=3x-12\\ \Leftrightarrow-4=3x-12\\ \Leftrightarrow3x=-4+12\\ \Leftrightarrow3x=8\\ \Leftrightarrow x=\dfrac{8}{3}\left(tm\right)\)
c)
\(\dfrac{1}{x+1}-\dfrac{4}{x^2-x+1}=\dfrac{2x^2+1}{x^3+1}\left(x\ne-1\right)\\ \Leftrightarrow\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{4\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2+1}{\left(x+1\right)\left(x^2-x+1\right)}\\ \Leftrightarrow x^2-x+1-4x-4=2x^2+1\\ \Leftrightarrow x^2-5x-3=2x^2+1\\ \Leftrightarrow2x^2-x^2+5x+1+3=0\\ \Leftrightarrow x^2+5x+4=0\\ \Leftrightarrow\left(x+1\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=-4\left(tm\right)\end{matrix}\right.\)
a) Đặt: `4x-5=t`
\(t^2+2t+1=0\\ \Leftrightarrow\left(t+1\right)^2=0\\ \Leftrightarrow t+1=0\\ \Leftrightarrow t=-1\)
\(\Rightarrow4x-5=-1\\ \Leftrightarrow4x=-1+5\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\)
b) Đặt: \(x^2-x=t\)
\(t\left(t+1\right)=6\\ \Leftrightarrow t^2+t-6=0\\ \Leftrightarrow t^2-2t+3t-6=0\\ \Leftrightarrow t\left(t-2\right)+3\left(t-2\right)=0\\ \Leftrightarrow\left(t-2\right)\left(t+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-3\end{matrix}\right.\)
Với:
\(t=2\Rightarrow x^2-x=2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Với:
\(t=-3\Rightarrow x^2-x=-3\Leftrightarrow x^2-x+3=0\)
Mà: `x^2-x+3>0` nên vô lý
a)
\(3x\left(x-4\right)+7\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(3x+7\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+7=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\3x=-7\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{7}{3}\end{matrix}\right.\)
Vậy: ...
b)
\(\left(4x^2-9\right)+\left(x+2\right)\left(3-2x\right)=0\\ \Leftrightarrow\left(2x-3\right)\left(2x+3\right)-\left(x+2\right)\left(2x-3\right)=0\\ \Leftrightarrow\left(2x-3\right)\left(2x+3-x-2\right)=0\\ \Leftrightarrow\left(2x-3\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-1\end{matrix}\right.\)
Vậy: ...
c)
\(\left(x-1\right)^2=\left(2x+3\right)^2\\ \Leftrightarrow\left(x-1\right)^2-\left(2x+3\right)^2=0\\ \Leftrightarrow\left(x-1+2x+3\right)\left(x-1-2x-3\right)=0\\ \Leftrightarrow\left(3x+2\right)\left(-x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x=-2\\-x=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-4\end{matrix}\right.\)
Vậy: ...
d)
\(x^2-6x+5=0\\ \Leftrightarrow x^2-5x-x+5=0\\ \Leftrightarrow x\left(x-5\right)-\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Vậy: ...
a)
\(\left(x-5\right)\left(3x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\3x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: ...
b)
\(\left(\dfrac{2}{3}x-1\right)\left(\dfrac{1}{3}x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{3}x-1=0\\\dfrac{1}{3}x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=1\\\dfrac{1}{3}x=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1:\dfrac{2}{3}\\x=-2:\dfrac{1}{3}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-6\end{matrix}\right.\)
Vậy: ...
c)
\(\left(x+7\right)\left(\dfrac{x}{3}-\dfrac{2-x}{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+7=0\\\dfrac{x}{3}-\dfrac{2-x}{6}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-7\\\dfrac{2x}{6}-\dfrac{2-x}{6}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-7\\\dfrac{2x-2+x}{6}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-7\\3x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-7\\3x=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-7\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy: ...
ĐK: \(x\ge2,y\ge-2009,z\ge2010\)
Ta có: \(\sqrt{x-2}=\sqrt{1.\left(x-2\right)}\le\dfrac{1+x-2}{2}=\dfrac{x-1}{2}\)
\(\sqrt{y+2009}=\sqrt{1.\left(y+2009\right)}\le\dfrac{1+y+2009}{2}=\dfrac{y+2010}{2}\)
\(\sqrt{z-2010}=\sqrt{1.\left(z-2010\right)}\le\dfrac{1+z-2010}{2}=\dfrac{z-2009}{2}\)
Cộng theo vế 3 BĐT vừa tìm được, ta có:
\(VT=\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}\)
\(\le\dfrac{x-1}{2}+\dfrac{y+2010}{2}+\dfrac{z-2009}{2}\)
\(=\dfrac{x-1+y+2010+z-2009}{2}\)
\(=\dfrac{1}{2}\left(x+y+z\right)\)
\(=VP\)
Do đó, dấu "=" phải xảy ra
\(\Leftrightarrow x-2=y+2009=z-2010=1\)
\(\Leftrightarrow\left(x,y,z\right)=\left(3,-2008,2011\right)\)
Vậy pt đã cho có nghiệm duy nhất là \(\left(3,-2008,2011\right)\)