Tìm số tự nhiên nhỏ nhất n>1 sao cho
A=12+22+32+...n2 là 1 số chính phương
giúp mk vs sắp phải nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số tự nhiên nhỏ nhất n>1 sao cho
A=12+22+32+...n2 là 1 số chính phương
giúp mk vs sắp phải nộp rồi
Mình làm như thế này không biết đúng không:
x2=5+2yx2=5+2y
Xét x chẵn pt vô nghiệm
Xét x lẻ ⇒x=2k+1⇒x=2k+1 ; (kϵZ)(kϵZ)
4k2+4k+1=5+2y4k2+4k+1=5+2y
⇔4k2+4k−2y=4⇔4k2+4k−2y=4
⇔⇔2k2+2k−y=22k2+2k−y=2
Suy ra y chẵn trái với giả thiết
Do đó pt trên không có nghiệm nguyên
Mình làm như thế này không biết đúng không:
x2=5+2yx2=5+2y
Xét x chẵn pt vô nghiệm
Xét x lẻ ⇒x=2k+1⇒x=2k+1 ; (kϵZ)(kϵZ)
4k2+4k+1=5+2y4k2+4k+1=5+2y
⇔4k2+4k−2y=4⇔4k2+4k−2y=4
⇔⇔2k2+2k−y=2v
Không mất tính tổng quát giả sử \(a\ge b\ge c>0\Rightarrow\hept{\begin{cases}b+c\le a+c\le a+b\\\frac{a^a}{b+c}\ge\frac{b^a}{c+a}\ge\frac{c^a}{a+b}\end{cases}}\)
Sử dụng bất đẳng thức Chebyshev cho 2 dãy đơn ngược chiều ta có:
\(VT\left(1\right)=\frac{1}{2\left(a+b+c\right)}\left(\frac{a^a}{b+c}+\frac{b^a}{c+a}+\frac{c^a}{a+b}\right)\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\ge\)
\(\frac{1}{2\left(a+b+c\right)}\cdot3\left[\frac{a^a}{b+c}\left(b+c\right)+\frac{b^a}{c+a}\left(c+a\right)+\frac{c^a}{a+b}\left(a+b\right)\right]=\frac{3\left(a^a+b^a+c^a\right)}{2\left(a+b+c\right)}\)\(=\frac{3}{2}\cdot\frac{a^a+b^a+c^a}{a+b+c}\)
=> đpcm
+) Nếu x,y cùng chẵn thì Q chẵn
Lúc đó P.Q chẵn
+) Nếu x chẵn, y lẻ thì 5x + y + 1 chẵn nên P.Q chẵn
+) Nếu x lẻ, y chẵn thì 5x + y + 1 chẵn nên P.Q chẵn
Nếu m,n cùng chẵn
⇒ Q chẵn
⇒ P.Qchẵn
Nếu m,ncùng lẽ
⇒ Q chẵn
⇒ P.Q chẵn
Nếu m,n có tính chẵn lẻ khác nhau
⇒ P chẵn
⇒ P.Q chẵn
\(5+4x-x+2=\left(5x+4\right)\left(7+5x\right)\)
\(\Leftrightarrow5+4x-x+2=35+28x+25x+20x^2\)
\(\Leftrightarrow x^2+50x+28=0\)
Ta có \(\Delta=50^2-4.1.28=2388,\sqrt{\Delta}=2\sqrt{597}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-50+2\sqrt{597}}{2}=-25+\sqrt{597}\\x=\frac{-50-2\sqrt{597}}{2}=-25-\sqrt{597}\end{cases}}\)
\(5+4x-x+2=\left(5+4x\right)\left(7+5x\right)\)
\(7+3x=\left(5+4x\right)\left(7+5x\right)\)
\(7+3x=35+28x+25x+20x^2\)
\(7+3x-35-28x-25x-20x^2=0\)
\(-28-50x-20x^2=0\)
\(-28-50x-20x^2=0\)
\(x=-\frac{25+\sqrt{65}}{20};-\frac{25-\sqrt{65}}{20}\)
(x-3).(2x-1)=(2x-1).(2x+3)
<=> (x-3).(2x-1)-(2x-1).(2x+3)=0
<=> (x-3-2x-3)(2x-1)=0
<=> (-3x-6)(2x-1)=0
<=> -3x-6=0 hoặc 2x-1=0
<=> -3x=6 hoặc 2x=1
<=> x=-2 hoặc x=1/2
Vậy \(x\in\left\{-2;\frac{1}{2}\right\}\)
(x - 3)(2x - 1) = (2x - 1)(2x + 3)
<=> (x - 3)(2x - 1) - (2x - 1)(2x + 3) = 0
<=> (2x - 1)(x - 3 - 2x - 3) = 0
<=> (2x - 1)(-x - 6) = 0
<=> \(\orbr{\begin{cases}2x-1=0\\-x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-6\end{cases}}\)
Vậy S = {1/2; -6}
5x2 + 8xy + 5y2 = 72
<=> 5x2 + 10xy + 5y2 - 2xy = 72
<=> 5(x2 + 2xy + y2) - 2xy = 72
<=> 5(x + y)2 - 2xy = 72
<=> -2xy = 72 - 5(x + y)2
A = x2 + y2 = (x + y)2 - 2xy
= (x + y)2 + 72 - 5(x + y)2
= 72 - 4(x + y)2
(x + y)2 > 0 => -4(x + y)2 < 0
=> A < 72
dấu "=" xảy ra khi : x + y = 0 <=> x = -y