K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4
456
CTVHS
6 tháng 4

\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+.....+\dfrac{1}{2022}-\dfrac{1}{2023}+\dfrac{1}{2023}-\dfrac{1}{2023}\)

1 -- \(\dfrac{1}{2023}\) 

1 + \(\dfrac{1}{2023}\)

\(\dfrac{2023+1}{2023}=\dfrac{2024}{2023}\)

Sai ko chịu trách nhiệm

6 tháng 4

1/2.3+1/3.4+1/4.5+...+1/2022.2023 + 1/2023.2023

= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/2022 + 1/2023 + 1/2023

= 1/2 - 0

= 1/2

6 tháng 4

a, \(2CH_3COOH+CaCO_3\rightarrow\left(CH_3COO\right)_2Ca+CO_2+H_2O\)

b, \(n_{CaCO_3}=\dfrac{30}{100}=0,3\left(mol\right)\)

Theo PT: \(n_{CH_3COOH}=2n_{CaCO_3}=0,6\left(mol\right)\)

\(\Rightarrow C_{M_{CH_3COOH}}=\dfrac{0,6}{0,25}=2,4\left(M\right)\)

c, \(n_{\left(CH_3COO\right)_2Ca}=n_{CaCO_3}=0,3\left(mol\right)\)

\(\Rightarrow m_{\left(CH_3COO\right)_2Ca}=0,3.158=47,4\left(g\right)\)

7 tháng 4

cân băng sai r bn :/

6 tháng 4

cũng dễ

6 tháng 4

lạ à nha

6 tháng 4

sao dễ thế là sao

6 tháng 4

loading...  

a) Do ∆ADB vuông cân tại A (gt)

⇒ AB = AD

Do ∆AEC vuông cân tại A (gt)

⇒ AE = AC

Xét hai tam giác vuông: ∆ABC và ∆ADE có:

AB = AD (cmt)

AC = AE (cmt)

∆ABC = ∆ADE (hai cạnh góc vuông)

⇒ BC = DE (hai cạnh tương ứng)

b) Do ∆ADE vuông cân tại A (gt)

⇒ ∠ADB = ∠ABD = 45⁰

Do ∆AEC vuông cân tại A (gt)

⇒ ∠ACE = ∠AEC = 45⁰

⇒ ∠ACE = ∠ADB = 45⁰

Mà ∠ACE và ∠ADB là hai góc so le trong

⇒ DB // EC

c) Do AH ⊥ BC (gt)

⇒ MH ⊥ CN

Do AF ⊥ MC (gt)

⇒ NF ⊥ MC

∆CMN có:

MH ⊥ CN (cmt)

NF ⊥ MC (cmt)

⇒ MH và NF là hai đường cao của ∆CMN

Mà MH cắt NF tại A

⇒ CA là đường cao thứ ba của ∆CMN

⇒ CA ⊥ MN

d) Em xem lại đề nhé

8 tháng 4

1st:

atmosphere, countryside, plentiful, energy

2st: còn lại nhé

6 tháng 4

loading... 

a) ∆ABD có:

BA = BD (gt)

⇒ ∆ABD cân tại B

⇒ ∠BAD = ∠BDA

b) Do DK ⊥ AC (gt)

AB ⊥ AC (do ∆ABC vuông tại A)

⇒ DK // AB

⇒ ∠ADK = ∠BAD (so le trong)

Mà ∠BAD = ∠BDA (cmt)

⇒ ∠ADK = ∠BDA

⇒ ∠ADK = ∠HDA

Xét hai tam giác vuông: ∆ADK và ∆ADH có:

AD là cạnh chung

∠ADK = ∠HDA (cmt)

⇒ ∆ADK = ∆ADH (cạnh huyền - góc nhọn)

⇒ ∠DAK = ∠DAH (hai góc tương ứng)

⇒ ∠DAC = ∠DAH

⇒ AD là tia phân giác của ∠HAC

c) Do ∆ADK = ∆ADH (cmt)

⇒ AK = AH (hai cạnh tương ứng)

d) ∆CDK vuông tại K

⇒ CD là cạnh huyền nên là cạnh lớn nhất

⇒ CK < CD

Mà AK = AH (cmt)

BA = BD (cmt)

Cộng vế với vế, ta có:

CK + AK + AB < CD + AH + BD

⇒ AB + AC < BC + AH

a: Xet ΔBAD có BA=BD

nên ΔBAD cân tại B

=>\(\widehat{BAD}=\widehat{BDA}\)

b: Ta có: \(\widehat{HAD}+\widehat{BDA}=90^0\)(ΔDHA vuông tại H)

\(\widehat{DAC}+\widehat{BAD}=90^0\)

mà \(\widehat{BDA}=\widehat{BAD}\)

nên \(\widehat{HAD}=\widehat{DAC}\)

=>AD là phân giác của góc HAC

c: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)

Do đó: ΔAHD=ΔAKD

=>AH=AK

d: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)

=>\(AH\cdot BC=AB\cdot AC\)

\(\left(AB+AC\right)^2-\left(BC+AH\right)^2\)

\(=AB^2+AC^2+2\cdot AB\cdot AC-BC^2-AH^2-2\cdot BC\cdot AH\)

\(=BC^2+2\cdot AH\cdot BC-BC^2-2\cdot BC\cdot AH-AH^2\)

\(=-AH^2< 0\)

=>\(\left(AB+AC\right)^2< \left(BC+AH\right)^2\)

=>AB+AC<BC+AH

6 tháng 4

Giả sử mỗi con thỏ có 2 chân

Do số gà nhiều hơn số thỏ là 30 con nên nhiều hơn số chân là:

30 × 2 = 60 (chân)

Thực tế mỗi con thỏ nhiều hơn mỗi con gà số chân là:

4 - 2 = 2 (chân)

Số con thỏ là:

(60 - 24) : 2 = 18 (con)

Số con gà là:

18 + 30 = 48 (con)

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{DBH}\) chung

Do đó: ΔBDH~ΔBEC

=>\(\dfrac{BD}{BE}=\dfrac{BH}{BC}\)

=>\(BH\cdot BE=BD\cdot BC\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{DCH}\) chung

Do đó: ΔCDH~ΔCFB

=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)

=>\(CH\cdot CF=CD\cdot CB\)

\(BH\cdot BE+CH\cdot CF\)

\(=BD\cdot BC+CD\cdot BC\)

\(=BC\left(BD+CD\right)=BC^2\)