Cho tam giacs ABC, đường trung tuyến AM, H là trung điểm của AC. Gọi N là điểm đối xứng với M qua H.
a)Tứ giác ANCM là hình gì? Vì sao?
b)Nếu tam giác ABC vuông tại A thì tứ giác AMCN là hình gì? Trong trường hợp này nếu AB=4cm,AC=3cm. Tính cạnh của tứ giác AMCN ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) - Vì ABCD là hình bình hành(gt)
\(\Rightarrow BC
//AD\)và BC=AD
Mà \(E\in BC,F\in AD\)và \(BE=\frac{1}{2}BC,\text{AF}=\frac{1}{2}AD\)(gt)
Nên\(BE//\text{AF}\)và BE=AF
=> ABEF là hình bình hành (1)
Mặt khác AD=2AB(gt)
=>\(AB=\frac{AD}{2}\)
\(\text{AF}=\frac{AD}{2}\left(gt\right)\)
Nên AB=AF(2)
Từ (1) và (2) => ABEF là hình thoi
=> \(AE\perp BF\)
b) Ta có BC//FD(BC//AD,F thuộc AD)
=> BCDF là hình thang (3)
- Vì ABCD là hình bình hành(gt)
Nên \(\widehat{BAD}=\widehat{C}=60^o\)(4)
- Ta có : \(\widehat{B\text{AF}}+\widehat{ABE}=180^0\)(Trong cùng phía,BC//AD)
\(\widehat{ABE}=180^0-\widehat{B\text{AF}}\)
\(\widehat{ABE}=180^o-60^o=120^o\)
Mà ABEF là hình thoi
=> \(\widehat{B_1}=\widehat{\widehat{\frac{ABE}{2}}=\frac{120^o}{2}=60^o}\)(5)
Từ (4) và (5) => \(\widehat{C}=\widehat{B_1}\)(6)
Từ (3) và (6)
=> BCDF là hình thang cân
c) Vì ABCD là hình bình hành(gt)
Nên AB//CD và AB=CD
Mà M thuộc AB và AB=BM(M đối xứng với A qua B)
=> B là trung điểm của AB
Nên BM//CD và BM=CD
=> BMCD là hình bình hành (7)
- Xét \(\Delta ABF\)có ;
AB=AF(cmt)
=> \(\Delta ABF\)cân tại A
Mà \(\widehat{B\text{AF}}=60^o\)(gt)
Nên \(\Delta ABF\)đều
=> AB=BF=AF
- Xét \(\Delta ABD\)có:
BF là đường trung tuyến ứng với AD (FA=FD)
\(BF=\frac{1}{2}AD\)(BF=FA mà \(FA=\frac{1}{2}AD\))
Nên \(\Delta ABD\)vuông tại B
=> \(\widehat{MBD}=90^0\)(8)
Từ (7) và (8) =>BMCD là hình chữ nhật
Mà E là trung điểm của BC(gt)
Nên E là trung điểm của MD
Hay E,M,D thẳng hàng
Câu hỏi của Yaden Yuki - Toán lớp 8 - Học toán với OnlineMath Em tham khảo bài làm ở link này nhé!
a) D là trung điểm AB, E là trung ddieermr AC
=> DE là đường trung bình của tam giác ABC
=> DE//=1/2BC
=> BDEC là hình thang
b) Xét tứ giác AIBE có hai đường chéo AI và BE cắt nhau tại D
Mà D là trung điểm của IE và D là trung điểm AB
=> AIBE là hình bình hành
c)Điều kiện: hình bình hành AIBE là hình chữ nhật : \(\widehat{BEA}=90^o\)
hay \(BE\perp AC\)=> BE là đường cao của tam giác ABC
mà BE là trung tuyến của tam giác ABC vì E là trung điểm AC
=> tam giác ABC cân tại B
a ) tứ giác ABCD là hình vuông
vì \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^{^O}\)
và AB=BC
b) sợ kg đúng thôi
~ mik hok kg giỏi toán hình bn ạ ....chỉ toán số thôi
Tham khảo câu trả lời của Trần thị Loan :
Câu hỏi của hyun mau - Toán lớp 8 - Học toán với OnlineMath
Đặt \(A=4x^4+1\)
\(=\left(2x^2\right)^2+2.2x^2.1+1^2-4x^2\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
Điều kiện cần để A là số nguyên tố:
\(\orbr{\begin{cases}2x^2-2x+1=1\\2x^2+2x+1=1\end{cases}\Rightarrow}\hept{\begin{cases}2x\left(x-1\right)=0\\2x\left(x+1\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}\left(x\in N\right)}\)
Nếu x = 0 thì A = 1 không là số nguyên tố (loại)
Nếu x = 1 thì A = 5 là số nguyên tố (thỏa mãn)
Vậy x = 1
Ta có: EB = EA, FB = FC (gt)
⇒ EF là đường trung bình của ΔABC
⇒ EF // AC và EF = AC/2.
HA = HD, HC = GD
⇒ HG là đường trung bình của ΔADC
⇒ HG // AC và HG = AC/2.
Do đó EF // HG, EF = HG
⇒ EFGH là hình bình hành.
a) Hình bình hành EFGH là hình chữ nhật
<=> EH ⊥ EF
<=>\(AC\perp BD\) (vì EH // BD, EF// AC)
b) Hình bình hành EFGH là hình thoi
<=>EF = EH
<=> AC = BD (Vì \(EF=\frac{AC}{2},EH=\frac{BD}{2}\))
c) EFGH là hình vuông
<=> EFGH là hình thoi và EFGH là hình chữ nhật
<=> AC = BD và .\(AC\perp DB\)
a) Tứ giác ANCM có hai đường chéo MN và AC cắt nhau tại H
mà H là trung điểm AC và H alf trung điểm MN
=> ANCM là hình bình hành
b) M là trung điểm BC, H là trung điểm AC => MH là đường trung bình của tam giác ABC
=> MH // AB mà AB \(\perp\)AC => MH\(\perp\)AC hay MN\(\perp\)AC
=> Hình bình hành ANCM là hình thoi
AB= 4cm , AC= 3cm, tam giác ABC vuông tại A
Áp dụng định lí Pi ta go
=> BC=5 cm
Tam giác ABC vuông tại A có AM là đường trung tuyến => AM=1/2BC=2,5 cm , Các cạnh của hình thoi bằng nhau và bằng 2,5 cm