K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
2 tháng 7 2024

\(32< 2^n< 128\\ =>2^5< 2^n< 2^7\\ =>5< n< 7\)

Vì n là số nguyên nên n=6

b) \(2.16\ge2^n>4\\ =>2.2^4\ge2^n>2^2\\ =>2^5\ge2^n>2^2\\ =>5\ge n>2\)

Vì n là số nguyên nên \(n\in\left\{3;4;5\right\}\)

DT
2 tháng 7 2024

\(100-\left(2,6+23,4:6\right)\times10,8\\ =100-\left(2,6+3,9\right)\times10,8\\ =100-6,5\times10,8\\ =100-70,2\\ =29,8\)

2 tháng 7 2024

\(\left[\left(-\dfrac{1}{2}\right)^3-\left(\dfrac{3}{4}\right)^3\cdot\left(-2\right)^2\right]:\left[2\cdot\left(-1\right)^5+\left(\dfrac{3}{4}\right)^2-\dfrac{3}{8}\right]\\ =\left(-\dfrac{1}{8}-\dfrac{27}{64}\cdot4\right):\left(2\cdot-1+\dfrac{9}{16}-\dfrac{3}{8}\right)\\ =\left(-\dfrac{1}{8}-\dfrac{27}{16}\right):\left(-2+\dfrac{9}{16}-\dfrac{3}{8}\right)\\ =\left(\dfrac{-2}{16}-\dfrac{27}{16}\right):\left(\dfrac{-32}{16}+\dfrac{9}{16}-\dfrac{6}{16}\right)\\ =\dfrac{-29}{16}:\dfrac{-29}{16}\\ =1\)

____________________________

\(\left[3\dfrac{1}{6}-\left(0,06\cdot7\dfrac{1}{2}+6\dfrac{1}{4}\cdot0,24\right)\right]:\left(1\dfrac{2}{3}+2\dfrac{2}{3}\cdot1\dfrac{3}{4}\right)\\ =\left[\dfrac{19}{6}-\left(0,06\cdot\dfrac{15}{2}+\dfrac{25}{4}\cdot4\cdot0,06\right)\right]:\left(\dfrac{5}{3}+\dfrac{8}{3}\cdot\dfrac{7}{4}\right)\\ =\left[\dfrac{19}{6}-0,06\cdot\left(\dfrac{15}{4}+25\right)\right]:\left(\dfrac{5}{3}+\dfrac{14}{3}\right)\\ =\left(\dfrac{19}{6}-0,06\cdot\dfrac{65}{2}\right):\dfrac{19}{3}\\ =\left(\dfrac{19}{6}-\dfrac{39}{20}\right):\dfrac{19}{3}\\ =\dfrac{73}{60}:\dfrac{19}{3}\\ =\dfrac{73}{380}\)

DT
2 tháng 7 2024

\(8^{12}=\left(8^3\right)^4=512^4\\ 12^8=\left(12^2\right)^4=144^4\\ \)

Nhận thấy: \(512^4>144^4\Rightarrow8^{12}>12^8\)

2 tháng 7 2024

\(8^{12}=\left(2^3\right)^{12}=2^{36}\)

\(12^8=\left(2^2\cdot3\right)^8=\left(2^2\right)^8\cdot3^8\\ =2^{16}\cdot3^8< 2^{16}\cdot4^8=2^{16}\cdot\left(2^2\right)^8=2^{16}\cdot2^{16}=2^{32}< 2^{36}\) 

=> \(12^8< 8^{12}\)

DT
2 tháng 7 2024

\(0,6239=\dfrac{6239}{10000}\)

2 tháng 7 2024

6239/10000 đúng hong mọi người/

 

2 tháng 7 2024

a) Thời gian người đi xe máy đuổi kịp người đi xe đạp là:

48 : ( 36 - 12 ) = 2 ( giờ )

Người đi xe máy đuổi kịp người đi xe đạp lúc:

6 giờ + 2 giờ = 8 giờ

b) Khi gặp nhau, họ cách B số ki-lô-mét là :

12 x 2 = 24 ( km)

2 tháng 7 2024

Không có hình sao giải đc em?

`#3107.101107`

`a,`

`x - 315 =121 + 89`

`x - 315 = 210`

`x = 210 + 315`

`x = 525`

Vậy, `x = 525`

`b,`

`x + 326 = 558 - 18`

`x + 326 = 540`

`x = 540 - 326`

`x = 214`

Vậy, `x = 214`

`c,`

`x \times 4 = 21 + 15`

`x \times 4 = 36`

`x = 36 \div 4`

`x = 9`

Vậy, `x = 9`

`d,`

`x \div 5 = 108 - 99`

`x \div 5 = 9`

`x = 9 \times 5`

`x = 45`

Vậy, `x = 45.`

2 tháng 7 2024

a) x - 315 = 121 + 89

 x - 315 = 210 

 x = 210 + 315

 x = 525 

b) x + 326 = 558 - 18

 x + 326 = 540 

 x = 540 - 326

 x = 214 

c)

\(x\times4=21+15\\ x\times4=36\\ x=36:4\\ x=9\) 

d) 

\(x:5=108-99\\ x:5=9\\ x=5\times9\\ x=45\)

4
456
CTVHS
2 tháng 7 2024

Vì `3 = 3 ; 2 < 5`nên 3,2 < 3,5.

DS
2 tháng 7 2024

3,2 < 3,5

 

2 tháng 7 2024

b) Để ý rằng phương trình của trục Ox là \(y=0\). Do đó pt hoành độ giao điểm của Ox và d là \(\left(m^2+1\right)x_A-2m=0\Leftrightarrow x_A=\dfrac{2m}{m^2+1}\)

 Mà \(OA=\left|x_A\right|=\left|\dfrac{2m}{m^2+1}\right|=\dfrac{2\left|m\right|}{m^2+1}\) , \(OA=\dfrac{4}{5}\)

\(\Rightarrow\dfrac{2\left|m\right|}{m^2+1}=\dfrac{4}{5}\) 

\(\Leftrightarrow2m^2-5\left|m\right|+2=0\)

Xét \(m\ge0\), khi đó \(2m^2-5m+2=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=\dfrac{1}{2}\end{matrix}\right.\) (nhận)

Xét \(m< 0\), khi đó \(2m^2+5m+2=0\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{2}\\m=-2\end{matrix}\right.\) (nhận)

Vậy \(m\in\left\{\pm2;\pm\dfrac{1}{2}\right\}\) thỏa mãn ycbt.

c) Theo câu b), ta có \(OA=\dfrac{2\left|m\right|}{m^2+1}\). d cắt Oy tại \(B\left(0,-2m\right)\)

\(\Rightarrow OB=\left|-2m\right|=2\left|m\right|\)

Có \(OA=2OB\Leftrightarrow\dfrac{2\left|m\right|}{m^2+1}=4\left|m\right|\)

\(\Leftrightarrow\left|m\right|\left(2-\dfrac{1}{m^2+1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\2m^2+1=0\left(vôlý\right)\end{matrix}\right.\)

Vậy \(m=0\) thỏa mãn ycbt.

d) Gọi \(h\) là khoảng cách từ O đến d thì khi đó:

\(\dfrac{1}{h^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)

\(=\dfrac{1}{\left(\dfrac{2\left|m\right|}{m^2+1}\right)^2}+\dfrac{1}{\left(2\left|m\right|\right)^2}\)

\(=\dfrac{m^4+2m^2+1}{4m^2}+\dfrac{1}{4m^2}\)

\(=\dfrac{m^4+2m^2+2}{4m^2}\)

\(\Rightarrow h^2=\dfrac{4m^2}{m^4+2m^2+2}\)

Đặt \(t=m^2\left(t>0\right)\) thì ta có \(h^2=\dfrac{4t}{t^2+2t+2}=P\)

\(\Leftrightarrow Pt^2+2\left(P-2\right)t+2P=0\)    (*)

Có \(\Delta'=\left(P-2\right)^2-2P^2=P^2-4P+4-2P^2=-P^2-4P+4\)

\(\Delta'\ge0\Leftrightarrow-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)

Ta thấy \(P=\dfrac{2P}{P}=2>0\) nên để pt đã cho có 1 nghiệm dương thì \(S>0\Leftrightarrow-2\left(P-2\right)>0\Leftrightarrow P< 2\) 

 Kết hợp 2 điều kiện, ta được \(-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)

 Vậy \(maxP=-2+2\sqrt{2}\). Dấu "=" xảy ra khi \(t=\dfrac{-2\left(-2+2\sqrt{2}-2\right)}{2\left(-2+2\sqrt{2}\right)}=\sqrt{2}\) 

\(\Leftrightarrow m^2=\sqrt{2}\Leftrightarrow m=\pm\sqrt[4]{2}\)

Vậy \(m=\pm\sqrt[4]{2}\) thỏa mãn ycbt.