Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL :
Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b.\).
HT
Thưa anh, nếu \(a=b=10^{-4}\) và \(c=0,5-a-b=0,5-2.10^{-4}\),em bấm máy thì ngay cả khi chỉ có một cái
\(\frac{1}{ab\left(a+b\right)}\)nó đã bằng \(5.10^{11}\)lớn hơn rất nhiều so với \(\frac{87}{2}\), BĐT vẫn đúng chứ ạ?
Phương trình đường thẳng cần tìm có hệ số góc là \(-\frac{1}{2}\)nên có dạng \(y=-\frac{1}{2}x+a\)
Phương trình hoành độ giao điểm của \(\left(d_1\right)\&\left(d_2\right)\)là: \(x+3=2x-1\)\(\Leftrightarrow x=4\)
\(\Rightarrow y=x+3=4+3=7\)
Vậy giao điểm của \(\left(d_1\right)\&\left(d_2\right)\)là điểm \(\left(4;7\right)\)
Mà \(\left(d\right):y=-\frac{1}{2}x+a\)đi qua điểm \(\left(4;7\right)\)nên ta thay \(x=4;y=7\)vào hàm số, ta có:
\(7=-\frac{1}{2}.4+a\)\(\Leftrightarrow a=9\)
Vậy phương trình đường thẳng cần tìm là \(\left(d\right):y=-\frac{1}{2}x+9\)
Vì (d) có hệ số góc bằng -1/2 nên a=-1/2
Vậy: (d): y=-1/2x+b
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}2x-1=x+3\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Thay x=4 và y=7 vào (d), ta được: b-2=7
hay b=9
Không vẽ hình vì sợ duyệt
Gọi I là giao điểm của BD và CF, ta cần chứng minh AE đi qua I.
\(\Delta ABF\)và \(\Delta ACD\)đều nên \(AB=AF,AD=AC\)và \(\widehat{BAF}=\widehat{DAC}=60^0\)
\(\Rightarrow\widehat{BAF}+\widehat{BAC}=\widehat{DAC}+\widehat{BAC}\)\(\Rightarrow\widehat{BAD}=\widehat{FAC}\)
Xét \(\Delta ABD\)và \(\Delta AFC\)ta có: \(AB=AF\left(cmt\right);\widehat{BAD}=\widehat{CAF}\left(cmt\right);AD=AC\left(cmt\right)\)
\(\Rightarrow\Delta ABD=\Delta AFC\left(c.g.c\right)\)\(\Rightarrow\hept{\begin{cases}\widehat{ABD}=\widehat{AFC}\\\widehat{ADB}=\widehat{ACF}\end{cases}}\)
Do B, I, D thẳng hàng và C, I ,F thẳng hàng nên ta có \(\hept{\begin{cases}\widehat{ABI}=\widehat{AFI}\\\widehat{ADI}=\widehat{ACI}\end{cases}}\)và từ đó ta có các tứ giác IAFB và IADC nội tiếp.
\(\Rightarrow\hept{\begin{cases}\widehat{AIB}+\widehat{AFB}=180^0\\\widehat{AIC}+\widehat{ADC}=180^0\end{cases}}\Rightarrow\hept{\begin{cases}\widehat{AIB}=180^0-\widehat{AFB}\\\widehat{AIC}=180^0-\widehat{ADC}\end{cases}}\)
Do các tam giác ABF và ACD đều nên \(\widehat{AFB}=\widehat{ADC}=60^0\), từ đó dễ dàng tính được \(\widehat{AIB}=\widehat{AIC}=120^0\)
Mà \(\widehat{AIB}+\widehat{AIC}+\widehat{BIC}=360^0\)nên ta cũng dễ dàng tính ra \(\widehat{BIC}=120^0\)
Mặt khác tam giác BCE đều nên \(\widehat{BEC}=60^0\)
Tứ giác IBEC có \(\widehat{BIC}+\widehat{BEC}=60^0+120^0=180^0\)nên tứ giác IBEC nội tiếp
\(\Rightarrow\widehat{BIE}=\widehat{BCE}\), lại có \(\widehat{BCE}=60^0\)do tam giác BCE đều nên \(\widehat{BIE}=60^0\)
Ta có \(\widehat{AIE}=\widehat{AIB}+\widehat{BIE}=120^0+60^0=180^0\)nên I thuộc AE hay AE đi qua I
Mà I chính là giao điểm của BD, CF
\(\Rightarrow\)AE, BD, CF đồng quy.