Cho góc vuông xOy cố định. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B. Hai điểm A và B chuyển động sao cho OA+OB=a. Vẽ hai đường tròn (A; OB) , (B; OA), cắt nhau tại D và E. Chứng minh: DE luôn đi qua một điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ PT trên \(< =>\hept{\begin{cases}2x^2y-2y^3=3x\\2x.\left(2x^2+2y^2\right)=20y\end{cases}}\)
\(< =>\hept{\begin{cases}2x^2y-2y^3=3x\\4xy^2+4x^3=20y\end{cases}}\)
\(< =>\hept{\begin{cases}2xy-2y^3=3\\4xy+4x^3=20\end{cases}}\)
\(< =>2xy+4x^3+2y^3=17\)
\(< =>2y\left(x+y^2\right)+4x^3=17\)
\(< =>2\left(yx+y^3+2x^3\right)=17\)
\(< =>y\left(x+y^2\right)+2x^3=\frac{17}{2}\)
\(< =>...\)
Cô hướng dẫn nhé!
d1, d2, d3 đồng quy
=> Giả sự M(x, y ) là điểm đồng quy
tọa độ điểm M là giao điểm của d1, d2
=> Tìm được điểm M
có được M(x, y) rồi em thay vào d3 để tìm k :)
a) Gọi phương trình đường thẳng AB có dạng d: y=ax+b , a khác 0
A thuộc d=>2=a.0+b
B thuộc d => 4=2.a+b
=> b=2, a=1
AB: y=x+2
b) Để chứng minh ABC thẳng hàng em chứng minh C thuộc dường thẳng AB
Vì 1=-1+2 => C thuộc AB
c) Song song
2m^2-m=a=1
m^2+m khác 2
Em giải ra nhé