Phân tích đa thức sau thành nhân tử :
\(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức sau thành nhân tử :
\(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
Đây không phải câu hỏi linh tinh nha các bạn:
Thay mặt người phân phối chương trình xin tặng chương trình học online số 1 Việt Nam. Sự kiện bắt đầu từ ngày 28/10 đến 1/11
Xin chào các thành viên đang online trên trang. Sự kiện khuyến mãi được tài trợ 500 suất áo chiếc áo đá bóng Việt Nam.Mong tất cả mọi người đã xem vào truy cập sau để nhận thưởng khi xem có 1 bản đăng kí nhận miễn phí : Thời gian có hạn tặng mọi người đã tham gia tích cực -> Không tin các bạn có thể hỏi các CTV nha mình chỉ có quyền thông báo :
Copy cái này hoặc gõ :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
mn
Mọi người mau giúp mình với mình sẽ tặng 3 k vs lại mọi người chỉ cần trả lời phần c hộ mình thôi phần a, b mình làm đc rồi đăng cho nó đầy đủ. Vậy nhé cảm ơn mọi người nhìu!!!!
c) do DFAE là hình vuông => AD giao EF tại O là trung điểm của mỗi đường(*)
=> ED//AF => MD//AC (1)
ADBM là hình bình hành => MA//BD => MA//DC(2)
Từ (1)(2) => MDCA là hình bình hành => MC giao AD tại trung điểm của mỗi đường
mà O là trung điểm của AD theo(*)
=> O là trung điểm MC hay M,O,C thẳng hàng
Ta có :
\(\left(2x-10\right)\cdot3+40=100\)
=> \(6x-30+40-100=0\)
=> \(x=15\)
Gọi số cần tìm là a
Theo bài ra ta có :
3( 2a - 10 ) + 40 = 100
3( 2a - 10 ) = 60
2x - 10 = 20
2x = 30
x = 15
Vậy x = 15 thỏa mãn đề bài
K A B H D E F C
a, Xét tứ giác AKBH có:
AD = BD (gt), HD = KD (gt)
=>D là trung điểm của AB, HK
=> AB cắt HK tại D
=> tứ giác AKBH là hình bình hành
Mà góc AHB = 90 độ (AH _|_ BC)
=> AKBH là hình chữ nhật
b, Xét t/g ABC có: AD = BD (gt), AE = EC (gt)
=> DE là đường trung bình của t/g ABC
=> DE // BC hay DE // CF, DE = 1/2BC
Mà FC = FB = 1/2 BC
=> DE = FC
Xét tứ giác DECF có: DE // CF (cmt) ,DE = CF (cmt)
=>DECF là hình bình hành
c, Xét t/g ADE và t/g EFC có:
AE = EC (gt)
DE = FC (cmt)
góc AED = góc ECF (DE // BC, đồng vị)
=> t/g ADE = t/g EFC (c.g.c)
=>AD = EF (1)
Xét t/g ABH có: HD là đường trung tuyến
=> HD = 1/2AB = AD = DB (t/c đường trung tuyến trong tam giác vuông) (2)
Từ (1) và (2) => EF = DB
Mà DE // CF hay DE // HF
=> DEFH là hình thang cân
d, Ta có: góc HDE = góc DEF (DEFH là hình thang cân) (3)
CM EF là đường trung bình => EF // AD
=> góc DEF = góc ADE (so le trong) (4)
Từ (3),(4) => góc HDE = góc ADE
Mà góc ADK = góc HDB (đối đỉnh)
=> góc HDE + góc HDE = góc ADK + góc ADE
=> góc BDE = góc KDE
Lại có: BD = HD (cm câu c)
Mà HD = DK (gt)
=> BD = DK
Xét t/g EKD và t/g EBD có:
DK = BD (cmt)
góc KDE = góc BDE (cmt)
DE là cạnh chung
=> t/g/ EKD = t/g EBD (c.g.c)
=>EK = EB
\(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)=a^3\left(b-c\right)+b^3c-b^3a+c^3a-c^3b\\ \)
\(\Rightarrow\)\(a^3\left(b-c\right)+bc\left(b^2-c^2\right)-a\left(b^3-c^3\right)\)
\(\Rightarrow\)\(a^3\left(b-c\right)+bc\left(b-c\right)\left(b+c\right)-a\left(b-c\right)\left(b^2+bc+c^2\right)\)
\(\Rightarrow\)\(\left(b-c\right)\left(a^3+bc\left(b+c\right)-a\left(b^2+bc+c^2\right)\right)\)
\(\Rightarrow\)\(\left(b-c\right)\left(a^3+b^2c+bc^2-ab^2-abc-ac^2\right)\)
\(\Rightarrow\)\(\left(b-c\right)\left(bc\left(c-a\right)+b^2\left(c-a\right)-a\left(c^2-a^2\right)\right)\)
\(\Rightarrow\)\(\left(b-c\right)\left(c-a\right)\left(bc+b^2-a\left(c+a\right)\right)\)
\(\Rightarrow\)\(\left(b-c\right)\left(c-a\right)\left(bc+b^2-ac-a^2\right)\)
\(\left(b-c\right)\left(c-a\right)\left(b^2-a^2+c\left(b-a\right)\right)=\left(b-c\right)\left(c-a\right)\left(b-a\right)\left(a+b+c\right)\)