K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

Ta có: Ox vuông góc với Oz

=> góc xOz = 900.

=> góc xOt + góc tOz = 900. (1)

Ta có: Oy vuông góc với Ot

=> góc yOt = 900.

=> góc yOz + góc zOt = 900. (2)

Từ (1) và (2) => góc zOt = góc xOy 

11 tháng 9 2019

a, b, c là 3 cạnh của tam giác vuông => a, b, c>0 

Chứng minh  \(a^{2n}+b^{2n}\le c^{2n}\)  (1)  quy nạp theo n.

+) Với n=1 \(a^2+b^2=c^2\)  ( đúng)

+) Với n=2 \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=c^4-2a^2b^2< c^4\)

=> (1) đúng với n=2

+) G/s: (1) đúng với n  . Nghĩa là: \(a^{2n}+b^{2n}\le c^{2n}\)

Ta chứng minh (1) đúng với n+1

Thật vậy ta có:

\(a^{2\left(n+1\right)}+b^{2\left(n+1\right)}=a^{2n+2}+b^{2n+2}=a^{2n}.a^2+b^{2n}.b^2^{ }\)

\(=\left(a^{2n}+b^{2n}\right)\left(a^2+b^2\right)-a^2.b^{2n}-a^{2n}.b^2\le c^{2n}.c^2-a^2b^{2n}-a^{2n}.b^2< c^{2n}.c^2=c^{2\left(n+1\right)}\)

=> (1) đúng với n+1

Vậy (1) đúng với mọi n>0

'Vậy \(a^{2n}+b^{2n}\le c^{2n}\)

10 tháng 9 2019

Vì Om và On là hai tia nằm giữa hai tia Ox và Oy

=>mOnˆ=xOyˆ−xOmˆ−yOn^

⇔mOnˆ=1800−2yOnˆ

Mà Ot là tia phân giác của góc mOn

⇔tOn^=1/2(1800−2yOn^)

⇔tOnˆ=900−yOnˆ

Vì Ot là tia phân giác của góc mOn

=>tOyˆ=tOnˆ+yOnˆtOy^

⇔zOyˆ=900−yOnˆ

⇔tOyˆ=900

⇔Ot⊥xy

10 tháng 9 2019

Cmr + vẽ hình

y' O

Gọi A là giao điểm của Ox và Oy

=> Ta có:

\(\widehat{xOy}=\widehat{OAO'}\left(slt\right)\)

\(OAO=\widehat{xO''A}\left(slt\right)\)

Vậy đã chứng minh xong \(\widehat{xOy}=\widehat{xOy'}\)

11 tháng 9 2019

Sửa đề : Cho góc nhọn xOy và 1 điểm O'.Hãy vẽ 1 góc nhọn x'Oy' có Ox // O'x' , Oy // O'y' . Hãy chứng minh góc xOy và x'Oy' bằng nhau

Nếu đề sửa như vậy thì

2 1 y x O O y' x' 1 2

GT xOy và x'O'y' đều là góc nhọn Ox // O'x',Oy // O'y' KL xOy = x'O'y'

Chứng minh 

Vẽ đường thẳng OO' 

Vì Ox // O'x' nên có hai góc đồng vị bằng nhau :

                                             \(\widehat{O_1}=\widehat{O'}_1\)                                                              [1]

Vì Oy // O'y' nên có hai góc đồng vị bằng nhau :

                                            \(\widehat{O_2}=\widehat{O'}_2\)                                                              [2]

Từ 1 và 2 suy ra \(\widehat{O_1}-\widehat{O}_2=\widehat{O'}_1-\widehat{O'}_2\)

hay \(\widehat{xOy}=\widehat{x'Oy'}\)

10 tháng 9 2019

Ta có: \(\frac{a}{m}< \frac{b}{m}\)

Mà m>0 => a<b

Do đó: \(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)

hay \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)

10 tháng 9 2019

\(x^2-3x+\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)