Cho \(\Delta ABC\)cân tại A và điểm D cố định trên đáy BC . Dựng đường thẳng song song với BC cắt 2 cạnh bên ở E và F sao cho tổng
DE + DF đạt GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{x^3+8}+\sqrt{y^3+8}+\sqrt{z^3+8}\)
\(A=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}+\sqrt{\left(y+2\right)\left(y^2-2x+4\right)}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}\)
\(\sqrt{\frac{1}{2}}A=\sqrt{\left(x+2\right)\left(x^2-2x+4\right).\frac{1}{2}}+\sqrt{\left(y+2\right)\left(y^2-2x+4\right).\frac{1}{2}}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right).\frac{1}{2}}\)\(\sqrt{\frac{1}{2}}A=\sqrt{\left(x+2\right)\left(\frac{x^2}{2}-x+2\right)}+\sqrt{\left(y+2\right)\left(\frac{y^2}{2}-x+2\right)}+\sqrt{\left(z+2\right)\left(\frac{z^2}{2}-z+2\right)}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{\frac{1}{2}}A\le\frac{x+2+\frac{x^2}{2}-x+2+y+2+\frac{y^2}{2}-y+2+z+2+\frac{z^2}{2}-z+2}{2}=\frac{12+\frac{x^2+y^2+z^2}{2}}{2}=\frac{12+\frac{48}{2}}{2}=\frac{12+24}{2}=\frac{36}{2}=18\)
\(\Leftrightarrow A\le18:\sqrt{\frac{1}{2}}=18\sqrt{2}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2=\frac{x^2}{2}-x+2\\y+2=\frac{y^2}{2}-y+2\\z+2=\frac{z^2}{2}-z+2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=4x\\y^2=4y\\z^2=4z\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(x-4\right)=0\\y\left(y-4\right)=0\\z\left(z-4\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\\z=4\end{cases}\left(v\text{ì}x,y,z>0\right)}}\)
Vậy \(A_{max}=18\sqrt{2}\Leftrightarrow x=y=z=4\)
Tham khảo nhé~
bạn qua link này để đăng ký cho kênh của mình nhé ☺ : https://www.youtube.com/channel/UCqgS-egZEJIX-ON873XpD_Q/videos?view_as=subscriber
Áp dụng BĐT AM-GM ta có:
\(P=x+\frac{2}{3}y+\frac{1}{3}y+2013\ge2\sqrt{x.\frac{2}{3}y}+\frac{1}{3}y+2013\)
\(\ge2\sqrt{\frac{2}{3}.6}+\frac{1}{3}.3+2013=2\sqrt{4}+1+2013=4+2014=2018\)
Nên GTNN của P là 2018 đạt được khi \(x=2,y=3\)
\(x+y\ge2\sqrt{x.y}\)mà \(x\cdot y\ge6\)
\(\Rightarrow\)\(x+y\ge2\sqrt{x.y}\ge2\sqrt{6}\)
\(\Rightarrow\)\(x+y+2013\ge2\sqrt{x\cdot y}+2013\ge2\sqrt{6}+2013\)
dấu = xảy ra khi \(x+y+2013=2\sqrt{x\cdot y}+2013=2\sqrt{6}+2013\)
\(\Rightarrow\)Min \(p=2\sqrt{6}+2013\)
Bạn xem hộ mình sai ở đâu giùm nha?
\(M=\sqrt{3}xy+y^2=\frac{1}{2}\left(x^2+2\sqrt{3}xy+3y^2\right)-\frac{1}{2}x^2-\frac{1}{2}y^2\)
\(=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}\).
Nên GTNN của M là \(-\frac{1}{2}\) đạt được khi \(x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}\)
+,Với \(y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}\)
+,Với \(y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}\)
Ta lại có:\(M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}\)
Nên GTLN của M là \(\frac{3}{2}\) đạt được khi \(\sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}\)
+,Với \(x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}\)
+,Với \(x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}\)
M=3xy+y2=21(x2+23xy+3y2)−21x2−21y2
=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}=21(x+3y)2−21≥−21.
Nên GTNN của M là -\frac{1}{2}−21 đạt được khi x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}x=−3y⇒x2=3y2⇒4y2=1⇒y=±21
+,Với y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}y=21⇒x=−23
+,Với y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}y=−21⇒x=23
Ta lại có:M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}M=3xy+y2≤23x2+y2+y2=23x2+3y2=23
Nên GTLN của M là \frac{3}{2}23 đạt được khi \sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}3x=y⇒3x2=y2⇒4x2=1⇒x=±21
+,Với x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}x=21⇒y=23
+,Với x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}x=−21⇒y=−23