K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2022

\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a.\)

Mà \(\left(x+\sqrt{x^2+a}\right)\left(\sqrt{x^2+a}-x\right)=a.\)

và \(\left(\sqrt{y^2+a}-y\right)\left(\sqrt{y^2+a}+y\right)=a.\)

từ 3 cái trên =>\(\hept{\begin{cases}y+\sqrt{y^2+a}=\sqrt{x^2+a}-x\\x+\sqrt{x^2+a}=\sqrt{y^2+a}-y\end{cases}}\)cộng 2 vế lại và thu gọn => 2( x+y) =0 =>  x+y =0

(x+√x2+a)(y+√y2+a)=a.(x+x2+a)(y+y2+a)=a.

Mà (x+√x2+a)(√x2+a−x)=a.(x+x2+a)(x2+a−x)=a.

Và (√y2+a−y)(√y2+a+y)=a.(y2+a−y)(y2+a+y)=a.

Từ 3 cái trên =>\hept{y+√y2+a=√x2+a−xx+√x2+a=√y2+a−y\hept{y+y2+a=x2+a−xx+x2+a=y2+a−ycộng 2 vế lại và thu gọn => 2( x+y) =0 =>  x + y = 0

13 tháng 1 2022

Gọi I là giao của OO' với AB

Ta có

OA=O'A=OB=O'B=R => OAO'B là hình thoi (Tứ giác có 4 cạnh bằng nhau là hình thoi)

\(\Rightarrow AB\perp OO'\)(trong hình thoi 2 đường chéo vuông góc)

Ta có OO'=R => OI=OO'/2=R/2 (trong hình thoi hai đường chéo cắt nhau tại trung điểm mỗi đường)

Xét tg vuông AOI có

\(AI=\sqrt{OA^2-OI^2}=\sqrt{R^2-\frac{R^2}{4}}=\frac{R\sqrt{3}}{2}=\frac{AB}{2}\Rightarrow AB=R\sqrt{3}\)

\(\Rightarrow S_{OAO'B}=\frac{OO'.AB}{2}=\frac{R.R\sqrt{3}}{2}=\frac{R^2\sqrt{3}}{2}\)

13 tháng 1 2022

Phương trình đường thẳng nối 2 điểm \(A\left(x_A;y_A\right)\)và \(B\left(x_B;y_B\right)\)là:

\(\frac{y-y_A}{y_B-y_A}=\frac{x-x_A}{x_B-x_A}\)

Rồi bạn biến đổi để về dạng tổng quát. Không cần giải hệ mà có luôn công thức nâng cao.

13 tháng 1 2022

dạ ko thiếu đâu, tại vì em muốn hỏi là có cách làm nào mà ko cần giải hệ phương trình thôi hay ko,

13 tháng 1 2022

thực tế 1m tương đương với một dòng sông trung bình nha 

13 tháng 1 2022
1 giây dài 100 mili giây nghĩa là 100 mili giây = 1 giây
13 tháng 1 2022

1 giây = 100 mili giây

13 tháng 1 2022

the bon may co biet 

13 tháng 1 2022

Ta có \(x^4+x^2+1\le x^4+2x^2+1=\left(x^2+1\right)^2\)

Mà \(\left(x^2\right)^2=x^4< x^4+x^2+1\)nên \(\left(x^2\right)^2< x^4+x^2+1\le\left(x^2+1\right)^2\)

\(\Leftrightarrow x^4+x^2+1=\left(x^2+1\right)^2\)\(\Leftrightarrow y^2=\left(x^2+1\right)^2\)

Thay vào phương trình đã cho, ta có: \(x^4+x^2+1=\left(x^2+1\right)^2\)

\(\Leftrightarrow x^4+x^2+1=x^4+2x^2+1\)\(\Leftrightarrow x^2=0\)\(\Leftrightarrow x=0\)

Khi đó \(y^2=\left(x^2+1\right)^2=\left(0^2+1\right)^2=1\)\(\Leftrightarrow y=\pm1\)

Vậy phương trình đã cho có hai nghiệm nguyên là \(\left(0;1\right)\)và \(\left(0;-1\right)\)

13 tháng 1 2022

Giả thiết cho chưa đủ kìa. Chỉ biết \(cosA=\frac{3}{4}\)mà không biết độ dài của bất kì cạnh sao tính được cạnh?

21 tháng 1 2022

à bài này cô trường mình kêu sai đề rồi ạ. dù sao cũng cảm ơn bạn