Cho x/3=y/5
2x^2+y^2=43
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHK vuông tại H và ΔDHB vuông tại H có
HA=HD
HK=HB
Do đó: ΔAHK=ΔDHB
b: ΔAHK=ΔDHB
=>\(\widehat{HAK}=\widehat{HDB}\)
=>AK//DB
c: Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
=>BA=BD
d: Xét ΔHAB vuông tại H và ΔHDK vuông tại H có
HA=HD
HB=HK
Do đó: ΔHAB=ΔHDK
=>\(\widehat{HAB}=\widehat{HDK}\)
=>AB//DK
ta có: IK\(\perp\)AC
AB\(\perp\)AC
Do đó: IK//AB
mà DK//AB
và IK,DK có điểm chung là K
nên I,K,D thẳng hàng
Ta có:
\(\dfrac{1}{2}< \dfrac{x}{10}< \dfrac{4}{5}\\ \Rightarrow\dfrac{5}{10}< \dfrac{x}{10}< \dfrac{8}{10}\\ \Rightarrow5< x< 8\)
Vì \(x\) nguyên nên:
\(x\in\left\{6,7\right\}\)
Vậy \(x\in\left\{6,7\right\}\)
\(125^7:25^{16}\\ =\left(5^3\right)^7:\left(5^2\right)^{16}\\ =5^{3\cdot7}:5^{2\cdot16}\\ =5^{21}:5^{32}\\ =5^{21-32}\\ =5^{-11}\)
\(\dfrac{1}{3}\cdot x+\dfrac{2}{5}\cdot\left(x+1\right)=0\\ =>\dfrac{1}{3}\cdot x+\dfrac{2}{5}\cdot x+\dfrac{2}{5}=0\\ =>x\cdot\left(\dfrac{1}{3}+\dfrac{2}{5}\right)+\dfrac{2}{5}=0\\ =>x\cdot\dfrac{11}{15}+\dfrac{2}{5}=0\\ =>x\cdot\dfrac{11}{15}=-\dfrac{2}{5}\\ =>x=\dfrac{-2}{5}:\dfrac{11}{15}\\ =>x=\dfrac{-2}{5}\cdot\dfrac{15}{11}\\ =>x=\dfrac{-6}{11}\)
Bài 10:
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\)
=>\(\left\{{}\begin{matrix}c=dk\\b=ck=dk\cdot k=dk^2\\a=bk=dk^2\cdot k=dk^3\end{matrix}\right.\)
a:
\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\left(\dfrac{dk^3+dk^2+dk}{dk^2+dk+d}\right)^3=\left(\dfrac{dk\left(k^2+k+1\right)}{d\left(k^2+k+1\right)}\right)^3=k^3\)
\(\dfrac{a}{d}=\dfrac{dk^3}{d}=k^3\)
Do đó: \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
b: Sửa đề: Chứng minh \(\dfrac{a^3+c^3+b^3}{c^3+b^3+d^3}=\dfrac{a}{d}\)
\(\dfrac{a^3+c^3+b^3}{c^3+b^3+d^3}=\dfrac{\left(dk^3\right)^3+\left(dk\right)^3+\left(dk^2\right)^3}{\left(dk\right)^3+\left(dk^2\right)^3+d^3}\)
\(=\dfrac{d^3k^9+d^3k^3+d^3k^6}{d^3k^3+d^3k^6+d^3}=\dfrac{d^3\cdot k^3\left(k^6+1+k^3\right)}{d^3\cdot\left(k^3+k^6+1\right)}=k^3\)
\(=\dfrac{dk^3}{d}=\dfrac{a}{d}\)
Bài 14:
x+y+z=0
=>x+y=-z; x+z=-y; y+z=-x
\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\cdot\left(-x\right)\cdot\left(-y\right)\)
=-xyz
=-2
Bài 10:
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\)
=>\(\left\{{}\begin{matrix}c=dk\\b=ck=dk\cdot k=dk^2\\a=bk=dk^2\cdot k=dk^3\end{matrix}\right.\)
a:
\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\left(\dfrac{dk^3+dk^2+dk}{dk^2+dk+d}\right)^3=\left(\dfrac{dk\left(k^2+k+1\right)}{d\left(k^2+k+1\right)}\right)^3=k^3\)
\(\dfrac{a}{d}=\dfrac{dk^3}{d}=k^3\)
Do đó: \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
b: Sửa đề: Chứng minh \(\dfrac{a^3+c^3+b^3}{c^3+b^3+d^3}=\dfrac{a}{d}\)
\(\dfrac{a^3+c^3+b^3}{c^3+b^3+d^3}=\dfrac{\left(dk^3\right)^3+\left(dk\right)^3+\left(dk^2\right)^3}{\left(dk\right)^3+\left(dk^2\right)^3+d^3}\)
\(=\dfrac{d^3k^9+d^3k^3+d^3k^6}{d^3k^3+d^3k^6+d^3}=\dfrac{d^3\cdot k^3\left(k^6+1+k^3\right)}{d^3\cdot\left(k^3+k^6+1\right)}=k^3\)
\(=\dfrac{dk^3}{d}=\dfrac{a}{d}\)
Ta có:
\(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{28}\end{matrix}\right.\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau kết hợp \(2x+3y-z=372\) được:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{372}{62}=6\)
Suy ra:
\(\left\{{}\begin{matrix}x=15.6=90\\y=20.6=120\\z=28.6=168\end{matrix}\right.\)
Vậy \(x=90;y=120;z=168\)
Ta có \(\dfrac{x}{3}=\dfrac{y}{4}\)và \(\dfrac{y}{5}=\dfrac{z}{7}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)và 2x + 3y - z = 372
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2.15+3.20-28}=6\)
\(\Rightarrow x=90;y=120;z=168\)
Đặt: \(\dfrac{x}{3}=\dfrac{y}{5}=k=>\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)
Mà:
\(2x^2+y^2=43\\ =>2\cdot\left(3k\right)^2+\left(5k\right)^2=43\\ =>18k^2+25k^2=43\\ =>43k^2=43\\ =>k^2=1\\ =>k=\pm1\\ TH1:k=1=>\left\{{}\begin{matrix}x=3\cdot1=3\\y=5\cdot1=5\end{matrix}\right.\\ TH2:k=-1=>\left\{{}\begin{matrix}x=3\cdot\left(-1\right)=-3\\y=5\cdot\left(-1\right)=-5\end{matrix}\right.\)