Bài 1 : Cho biểu thức C = \(\frac{x}{2x-2}+\frac{x^2+1}{2-2x}\)
a, Tìm x để biểu thức C có nghĩa
b, Rút gọn biểu thức C
c, Tìm giá trị của x để biểu thức có giá trị bằng -0,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đến cuối thế kỉ XIX, đầu thế kỉ XX, trừ Xiêm (Thái Lan, các nước Đông Nam Á đều trở thành thuộc địa hay nửa thuộc địa của các nước đế quốc.
Các nước đế quốc đều thi hành chính sách cai trị hà khắc, khai thác, bóc lột thuộc địa dã man.
Nhân dân ở khu vực này đã liên tiếp nổi dậy đấu tranh dưới nhiều hình thức chống thực dân, phong kiến, dành độc lập dân tộc.
Các phong trào đấu tranh giải phóng dân tộc cuối thế kỉ XIX, đầu thế kỉ XX đều thất bại, song phong trào vẫn tiếp tục làm cơ sở cho sự phát triển tiếp theo ở những giai đoạn sau này.
Mình ko thêm bớt hạng tử nhé.
\(8x^3-3x+6x^2-1\)
\(=\left(8x^3-1\right)+\left(6x^2-3x\right)\)
\(=\left(2x-1\right)\left(4x^2+2x+1\right)+3x\left(2x-1\right)\)
\(=\left(2x-1\right)\left[\left(4x^2+2x+1\right)+3x\right]\)
\(=\left(2x-1\right)\left(4x^2+5x+1\right)\)
\(=\left(2x-1\right)\left[4x\left(x+1\right)+\left(x+1\right)\right]\)
\(=\left(2x-1\right)\left(x+1\right)\left(4x+1\right)\)
\(8x^3-3x+6x^2-1=\left(8x^3-12x^2+6x-1\right)+\left(18x^2-9x\right)\)
\(=\left(\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\right)+\left(18x^2-9x\right)\)
\(=\left(2x-1\right)^3+9x\left(2x-1\right)=\left(2x-1\right)\left(\left(2x-1\right)^2+9x\right)\)
\(=\left(2x-1\right)\left(4x^2-4x+1+9x\right)=\left(2x-1\right)\left(4x^2+5x+1\right)\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
ứ giác HDAE có ^A=^D=^E=90 độ
nên HDAE là hình chữ nhật, suy ra AH=DE.
b) ∆BDH vuông tại D có DP là trung tuyến nên PD=PH
suy ra ∆PDH cân tại P nên ^PDH=PHD (1)
Do ADHE là hình chữ nhật nên ^ODH=^OHD (2)
công vế với vế của (1) và (2) ta có:
^PDH+^ODH=^PHD+^OHD=^OHP=90 độ
Hay ^PDO=90 độ, nên PD┴DE. (3)
Chứng minh tương tự cuãng có QE┴DE (4)
từ (3) và (4) suy ra PD//QE
nên DEQP là hình thang vuông.
c) BO và AH là đường cao của ∆ABQ nên O là trực tâm
của ∆ABQ. ADHE là hình chữ nhật nên S(ADHE)=2S(DHE) (5)
d)∆BDH vuông tại D có DP là trung tuyến
nên S(BDH)=2S(DPH) (6)
tương tự S(HAC) = 2S(HEQ) (7)
Cộng vế với vế của (5), (6), (7)
thì S(ABC)=2S(DEQP)
a, Để C có nghĩa thì \(\hept{\begin{cases}2x-2\ne0\\2-2x\ne0\end{cases}\Rightarrow}x\ne1\)
b, Với x khác 1 thì
\(C=\frac{x}{2x-2}+\frac{x^2+1}{2-2x}=\frac{-x}{2-2x}+\frac{x^2+1}{2-2x}=\frac{x^2-x+1}{2-2x}\)
c, \(C=-0,5\Rightarrow\frac{x^2-x+1}{2-2x}=\frac{-1}{2}\)
\(\Rightarrow2\left(x^2-x+1\right)=\left(2-2x\right).\left(-1\right)\)
\(\Rightarrow2x^2-2x+2=-2+2x\)
\(\Rightarrow2x^2-2x+2+2-2x=0\)
\(\Rightarrow2x^2-4x+4=0\Rightarrow2\left(x^2-2x+2\right)=0\)
\(x^2-2x+2=\left(x-1\right)^2+1>0\forall x\)
Do đó: \(2\left(x^2-2x+2\right)>0\forall x\)
Vậy \(x\in\varnothing\)