- 1,62 + 2/5 + x = 7 giúp tui với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{9}{5}\) = - 0,15 - x
- 0,15 - x = 1,8
- x = 1,8 + 0,15
- x = 1,95
x = - 1,95
Vậy ...
`@` `\text {Ans}`
`\downarrow`
\(-\dfrac{3}{5}-x=0,75\)
\(\Rightarrow x=-\dfrac{3}{5}-0,75\)
\(\Rightarrow x=-\dfrac{27}{20}\)
Vậy, `x = `\(-\dfrac{27}{20}\)
a, 40= 23 x 5
60 = 22 x 3 x 5
ƯCLN(40;60)= 22 x 5 = 20
b, 28 = 22 x 7
39 = 3 x 13
35 = 5 x 7
ƯCLN(28;39;35)=1
c, 48 = 24 x 3
60 = 22 x 3 x 5
120 = 23 x 3 x 5
ƯCLN(48;60;120)= 22 x 3 = 12
d, 30 = 2 x 3 x 5
75 = 3 x 52
135= 33 x 5
Vậy ƯCLN(30;75;135)= 3 x 5 = 15
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
`@` `\text {Ans}`
`\downarrow`
Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì `8 < 9 \Rightarrow `\(8^{100}< 9^{100}\)
`\Rightarrow `\(2^{300}< 3^{200}\)
___
`@` So sánh `2` lũy thừa cùng số mũ:
`a^m > b^m` khi `a > b.`
\(...\Rightarrow x=-13+\dfrac{5}{9}\)
\(\Rightarrow x=\dfrac{-117+5}{9}\)
\(\Rightarrow x=\dfrac{-112}{9}\)
\(...\Rightarrow x=-\dfrac{2}{7}-\dfrac{4}{9}\)
\(\Rightarrow x=-\dfrac{18}{36}-\dfrac{28}{36}\)
\(\Rightarrow x=-\dfrac{46}{36}=-\dfrac{23}{18}\)
2\(^{x+3}\) + 2\(^x\) = 144
2\(^x\).( 23 + 1) = 144
2\(x\)(8 + 1) = 144
2\(^x\) . 9 = 144
2\(^x\) = 144 : 9
2\(^x\) = 16
2\(^x\) = 24
\(x\) = 4
Ta có \(\left(x+10\right)^4+\left(x-3\right)^4=\left[\left(x+10\right)^2\right]^2+\left[\left(3-x\right)^2\right]^2\)
\(\ge\dfrac{\left[\left(x+10\right)^2+\left(3-x\right)^2\right]^2}{2}\) \(\ge\dfrac{\left[\dfrac{\left(x+10+3-x\right)^2}{2}\right]^2}{2}\) \(=\dfrac{\left(\dfrac{13^2}{2}\right)^2}{2}\)\(=\dfrac{28561}{8}\) (áp dụng 2 lần bất đẳng thức \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\))
Suy ra \(P\le2000-\dfrac{28561}{8}=-\dfrac{12561}{8}\).
Dấu "=" xảy ra \(\Leftrightarrow x+10=3-x\Leftrightarrow x=-\dfrac{7}{2}\)
Vậy \(maxP=-\dfrac{12561}{8}\), max xảy ra khi \(x=-\dfrac{7}{2}\)
\(-1,62+\dfrac{2}{5}+x=7\\ =>-\dfrac{61}{50}+x=7\\ =>x=7--\dfrac{61}{50}\\ x=7+\dfrac{61}{50}\\ x=\dfrac{411}{50}\)
-1,62 + \(\dfrac{2}{5}\) + x = 7
x = 7 + 1,62 - \(\dfrac{2}{5}\)
x = 8,62 - 0,4
x = 8,22