K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2022

thực tế 1m tương đương với một dòng sông trung bình nha 

13 tháng 1 2022
1 giây dài 100 mili giây nghĩa là 100 mili giây = 1 giây
13 tháng 1 2022

1 giây = 100 mili giây

13 tháng 1 2022

the bon may co biet 

13 tháng 1 2022

Ta có \(x^4+x^2+1\le x^4+2x^2+1=\left(x^2+1\right)^2\)

Mà \(\left(x^2\right)^2=x^4< x^4+x^2+1\)nên \(\left(x^2\right)^2< x^4+x^2+1\le\left(x^2+1\right)^2\)

\(\Leftrightarrow x^4+x^2+1=\left(x^2+1\right)^2\)\(\Leftrightarrow y^2=\left(x^2+1\right)^2\)

Thay vào phương trình đã cho, ta có: \(x^4+x^2+1=\left(x^2+1\right)^2\)

\(\Leftrightarrow x^4+x^2+1=x^4+2x^2+1\)\(\Leftrightarrow x^2=0\)\(\Leftrightarrow x=0\)

Khi đó \(y^2=\left(x^2+1\right)^2=\left(0^2+1\right)^2=1\)\(\Leftrightarrow y=\pm1\)

Vậy phương trình đã cho có hai nghiệm nguyên là \(\left(0;1\right)\)và \(\left(0;-1\right)\)

13 tháng 1 2022

Giả thiết cho chưa đủ kìa. Chỉ biết \(cosA=\frac{3}{4}\)mà không biết độ dài của bất kì cạnh sao tính được cạnh?

21 tháng 1 2022

à bài này cô trường mình kêu sai đề rồi ạ. dù sao cũng cảm ơn bạn

13 tháng 1 2022

a) Gọi I là trung điểm của OA, ta ngay lập tức có được \(IO=IA=\frac{OA}{2}\)và BI, CI lần lượt là các trung tuyến của các tam giác OAB và OAC

Vì AB là tiếp tuyến tại A của đường tròn (O) \(\Rightarrow AB\perp OB\)tại B \(\Rightarrow\Delta OAB\)vuông tại B

\(\Delta OAB\)vuông tại B có trung tuyến BI \(\Rightarrow IB=\frac{OA}{2}\)

Chứng minh tương tự, ta có: \(IC=\frac{OA}{2}\)

Như vậy ta có \(IO=IA=IB=IC\left(=\frac{OA}{2}\right)\)

Vậy 4 điểm A, B, O, C cùng nằm trên đường tròn có tâm I, đường kính là OA.

b) Nhận thấy \(OB=OC\)(cùng bằng bán kính của (O)) 

\(\Rightarrow\)O nằm trên đường trung trực của BC. (1)

Xét đường tròn (O) có 2 tiếp tuyến tại B và C cắt nhau tại A \(\Rightarrow AB=AC\)(tính chất 2 tiếp tuyến cắt nhau)

\(\Rightarrow\)A nằm trên đường trung trực của BC. (2)

Từ (1) và (2) \(\Rightarrow\)OA là trung trực của BC \(\Rightarrow OA\perp BC\left(đpcm\right)\)

12 tháng 1 2022

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

12 tháng 1 2022
Nose this my is các anh chị giải dùm em với
12 tháng 1 2022

à mik bt lúc kia bn đó cũng có chửi mik 

12 tháng 1 2022

ủa cái này hỏi hay j đây

13 tháng 1 2022

S B C O A H E K I P

a/ 

Xét tg vuông SBO và tg vuông SCO có

OB=OC=R; SO chung => tg SBO = tg SCO (hai tg vuông có cạnh huyền và 1 cạnh góc vuông = nhau)

=> SB=SC => tg SBC cân tại S (1) và \(\widehat{BSO}=\widehat{CSO}\)  => SO là phân giác của \(\widehat{BSC}\)(2)

Xét tg SBC từ (1) và (2) \(\Rightarrow SO\perp BC\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao, đường trung tuyến)

=> HB=HC

b/

Ta có

\(\widehat{BCA}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AC\perp BC\)

Mà \(SO\perp BC\left(cmt\right)\)

=> AC//SO (cùng vuông góc với BC)

Xét tg vuông SBO và tg vuông BHO có

\(\widehat{BSO}=\widehat{HBO}\)(cùng phụ với \(\widehat{SOB}\))

=> tg SBO đồng dạng với tg BHO \(\Rightarrow\frac{HB}{HO}=\frac{HS}{HB}\)

Mà HB=HC (cmt) \(\Rightarrow\frac{HB}{HO}=\frac{HS}{HC}\Rightarrow HB.HC=HO.HS\)

c/

Xét tg vuông SBO và EOA có

OB=OA=R

AC//SO(cmt) \(\Rightarrow\widehat{BOS}=\widehat{OAE}\)

=> tg SBO = tg EOA (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng = nhau) => SB=EO

Mà \(SB\perp AB;EO\perp AB\) => SB//EO

=> SBOE là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh) => SE = OB = R (trong hbh các cặp cạnh đối = nhau từng đôi một)

d/

Gọi P là giao của SA với EO; I' là giao của SA với CK

Xét tg SAB có

SBOE là hình bình hành (cmt) => EO//SB => PO//SB

OB=OA=R

=> PE=PO (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Xét tg AOE có

\(CK\perp AB;EO\perp AB\)=> CK//EO \(\Rightarrow\frac{AK}{AO}=\frac{AC}{AE}\) (Talet) (1)

Xét tg APO có \(\frac{AK}{AO}=\frac{I'K}{PO}\)  (Talet) (2)

Xét tg APE có \(\frac{AC}{AE}=\frac{I'C}{PE}\)(Talet) (3)

Từ (1) (2) (3) \(\Rightarrow\frac{I'K}{PO}=\frac{I'C}{PE}\) Mà PO=PE (cmt) => I'K = I'C => I' là trung điểm của CK mà I cũng là trung điểm của CK

=> I' trùng I => S; I; A thẳng hàng