K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2020

Sử dụng BĐT AM-GM ta có:

\(\sqrt{1+x^3}=\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\le\frac{x^2-x+1+x+1}{2}=\frac{x^2+2}{2}\)

Đẳng thức xảy ra <=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Ta có \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\frac{1}{\sqrt{1+\left(\frac{b+c}{a}\right)^2}}\ge\frac{2}{\left(\frac{b+c}{a}\right)^2+2}\)

\(=\frac{2a^2}{2a^2+\left(b+c\right)^2}\ge\frac{2a^2}{2a^2+2\left(b^2+c^2\right)}=\frac{a^2}{a^2+b^2+c^2}\)

Tương tự có \(\hept{\begin{cases}\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\\\sqrt{\frac{c^3}{c^3+\left(a+c\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\end{cases}}\)

Cộng 3 vế BĐT trên ta được đpcm

Dấu "=" <=> a=b=c

24 tháng 11 2017

chia mỗi phân thức cho tử đi bạn nhé

24 tháng 11 2017

6133248

24 tháng 11 2017

bằng 2222222222222222222222222222222222222222222222222222222222222222222222

24 tháng 11 2017

fkfkbang14

Bài 1: Rút gọn biểu thức1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\)              2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)      4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\) ...
Đọc tiếp

Bài 1: Rút gọn biểu thức

1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\)              2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)

3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)      4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)

5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\)   6) \(\left(3\sqrt{20}-\sqrt{125}-15\sqrt{\frac{1}{5}}\right).\sqrt{5}\)

7) \(\left(6\sqrt{128}-\frac{3}{5}\sqrt{50}+7\sqrt{8}\right):3\sqrt{2}\)  8) \(\left(2\sqrt{48}-\frac{3}{2}\sqrt{\frac{4}{3}}+\sqrt{27}\right).2\sqrt{3}\)

9) \(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{8}-4\right)^2}\)    10) \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

11) \(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)      12) \(\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)

13) \(\sqrt{15-6\sqrt{6}}\)    14) \(\sqrt{8-2\sqrt{15}}\)    15) \(\sqrt[3]{-2}.\sqrt[3]{32}+\sqrt{2}.\sqrt{32}\)

 

1
26 tháng 11 2017

Giúp mình :<

24 tháng 11 2017

\(\sqrt{\frac{8-4\sqrt{3}}{\sqrt{6}-\sqrt{2}}}\cdot\sqrt{\sqrt{6}+\sqrt{2}}=2\)  \(=\) \(2\) nha bạn . 

24 tháng 11 2017

 = \(\sqrt{\frac{\left(\sqrt{6}-\sqrt{2}\right)^2}{\sqrt{6}-\sqrt{2}}}\)     .      \(\sqrt{\sqrt{6} +\sqrt{2}}\) = \(\sqrt{\sqrt{6}-\sqrt{2}}\) .    \(\sqrt{\sqrt{6}+\sqrt{2}}\)

 = \(\sqrt{\left(\sqrt{6}-\sqrt{2}\right).\left(\sqrt{6} +\sqrt{2}\right)}\) = \(\sqrt{6-2}\) = \(\sqrt{4}\) = 2

k mk nha