a,b,c>0 tm \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)< 10\)
CMR a,b,c là độ dài 3 cạnh 1 tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=\left(x^2-3x+1\right)^{2015}-\left(x^2-4x+5\right)^{2016}+2\)
\(f\left(x\right)=\left(x^2-4x+4+x+3\right)^{2015}-\left(x^2-4x+4+1\right)^{2016}+2\)
\(f\left(x\right)=B\left(x-2\right)+\left(x+3\right)^{2015}-B\left(x-2\right)-1+2\)
\(f\left(x\right)=B_1\left(x-2\right)-B_2\left(x-2\right)+\left(x-2+5\right)^{2015}+1\)
\(f\left(x\right)=B_1\left(x-2\right)-B_2\left(x-2\right)+B_3\left(x-2\right)+5^{2015}+1\)
Chỉ chia hết cho x-2 khi 5^2015+1 chia hết cho x-2
\(a,\left(2x+3\right)\left(2x-3\right)-\left(2x+1\right)^2\)
\(=4x^2-9-4x^2-4x-1\)
\(=-4x-10\)
\(=-2\left(2x+5\right)\)
b,Tương tự
\(x^2-2015x+2014=0\)
\(x^2-2014x-x+2014=0\)
\(x\left(x-2014\right)-\left(x-2014\right)=0\)
\(\left(x-2014\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2014=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2014\\x=1\end{cases}}}\)
\(x^2-2015x+2014\)\(=0\)
\(\Rightarrow x^2-x-2014x+2014\)\(=0\)
\(\Rightarrow x\left(x-1\right)-2014\left(x-1\right)\)\(=0\)
\(\Rightarrow\left(x-1\right)\left(x-2014\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2014=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2014\end{cases}}\)
\(2018x^2-2019x+1=0\)
\(2018x^2-2018x-x+1=0\)
\(2018x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(2018x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2018x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2018}\end{cases}}}\)