giải phương trình nghiệm nguyên xy2+2xy-8y+x=0
giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(32:\left(-\dfrac{16}{3}\right)=32\times\left(-\dfrac{3}{16}\right)=\dfrac{16\times2\times\left(-3\right)}{16}=-6\)
32 : ( - \(\dfrac{16}{3}\)) = 32 x ( - \(\dfrac{3}{16}\)) = - 6
Ta có: \(\dfrac{82}{67}< \dfrac{88}{67}\) mà \(\dfrac{88}{65}>\dfrac{88}{67}\)
Vậy \(\dfrac{82}{67}< \dfrac{88}{65}\)
ta có: 4 = 2 x 2
6 = 2 x 3
...... = ..........
30 = 2 x 15
Nhân vế với vế ta có: 4x6x8x...x30 = 214x (2x3x4x...x15)
⇒ \(\dfrac{1}{4}\times\dfrac{2}{6}\times\dfrac{3}{8}\times...\times\dfrac{14}{30}\times\dfrac{15}{32}\) = \(\dfrac{2\times3\times...\times14\times15}{2^{14}\times\left(2\times3\times...\times14\times15\right)\times32}\)
⇒ \(\dfrac{1}{2^{14}\times2^5}\) = \(\dfrac{1}{2^{2x+1}}\) ⇒ 219 = 2\(2x\)+1
⇒ 19 = 2\(x\) + 1 ⇒ 2\(x\) = 18 \(\Rightarrow\) \(x\) = 9
\(2^{91}=\left(2^{13}\right)^7=73728^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\) nhỏ hơn \(73728^7\)
\(\Rightarrow2^{91}\) lớn hơn \(5^{35}\)
\(b,3^{400}=\left(3^4\right)^{100}=81^{100}\\ 4^{300}=\left(4^3\right)^{100}=64^{100}\\ Vì:81^{100}>64^{100}\left(Do:81>64\right)\\ \Rightarrow3^{400}>4^{300}\)
Sửa đề là \(a+b=5\) nhé.
Có 2 cách để giải dạng bài này. Cách 1 là từ điều kiện đề cho, giải hệ phương trình tìm được \(a,b\) rồi thay số vào tính. Nhưng trong nhiều trường hợp cách này khá dài dòng nên mình sẽ làm theo cách thứ 2 như sau:
\(A=a^2+b^2=\left(a+b\right)^2-2ab=5^2-2.3=19\)
\(B=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=5^3-3.3.5=80\)
Trung bình cộng của ba số tự nhiên liên tiếp bằng số thứ hai và bằng:
2256 : 3 = 752
Số thứ nhất là: 752 - 1 = 751
Đáp số: 751
Số chia hết cho 9 mà mỗi số xuất hiện 1 lần.
Ta có: 1+2+3+4+5+6=21
Vậy các số chia hết cho 9 sẽ có tổng các chữ số là 9 hoặc 18
Số có 2 chữ số: 36; 63; 45; 54 => 4 số
Số có 3 chữ số: 126; 621; 162; 612; 216; 261; 234; 243; 342; 324; 432; 423; 135; 153; 351; 315; 513; 531 => 18 số
Số có 4 chữ số: 3456; 3465; 3546; 3564; 3654; 3645 => 6 số x 4 cách đổi = 24 số
Số có 5 chữ số: 12456; 12465; 12564; 12546; 12645; 12654 => Số lượng: 6 x 4 x 5 = 120 số
Tổng thoả mãn: 4+18+24+120= 166(số)
\(xy^2+2xy-8y+x=0\)
\(\Leftrightarrow xy^2+2xy+x=8y\)
\(\Leftrightarrow x\left(y^2+2y+1\right)=8y\)
\(\Leftrightarrow x\left(y+1\right)^2=8y\)
\(\Leftrightarrow\left(y+1\right)^2=\dfrac{8y}{x}=2^2.\dfrac{2y}{x}\left(x\ne0\right)\left(1\right)\)
Ta thấy \(VP=\left(y+1\right)^2\) là số chính phương lẻ hoặc chẵn
mà \(VP=2^2.\dfrac{2y}{x}\) là số chính phương chẵn \(\left(2^2;\dfrac{2y}{x}⋮2\right)\) và \(\dfrac{2y}{x}\) cũng là số chính phương
\(\Rightarrow\left(y+1\right)^2\) là số chính phương chẵn
\(\Rightarrow y\) là số lẻ
Vậy để thỏa \(\left(1\right)\) ta thấy \(y=1;x=2\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right)\right\}\left(x;y\in Z\right)\)
xy^3 + 2xy^2 - 8y^2 + x = 0
z^3 + 2z^2 - 8z + x = 0
z = (1 + 2 \sqrt{2}) \pm (1 - 2 \sqrt{2}) \sqrt{3}
xy = (1 + 2 \sqrt{2}) \pm (1 - 2 \sqrt{2}) \sqrt{3}
(x, y) = (1, 1), (1, -1), (-1, 1), (-1, -1)
Vậy, nghiệm nguyên của phương trình xy2+2xy−8y+x=0 là (1,1),(1,−1),(−1,1),(−1,−1).
thumb_upthumb_down
share
Tìm trên Google