Cho tam giác ABC vuông tại A với AB<AC. Gọi M là điểm trên AC sao cho MB=MC. Đặt\(BC=a,CA=b,AB=c,MB=d\). Gỉa sử \(a^2=4bc\)
a) Chứng minh rằng \(d=2c\)
b)Tính số đo các góc nhọn của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bảng tam giác Pascal ta có :
\(\left(x-2\right)^4=x^4-8x^3+24x^2-32x+16\)
\(\left(x+2\right)^4=x^4+8x^3+24x^2+32x+16\)
\(\Rightarrow\left(x-2\right)^4+\left(x+2\right)^4=2x^4+48x^2+32=626\)
\(\Leftrightarrow2x^4+48x^2-594=0\)
\(\Leftrightarrow2x^4-6x^3+6x^3-18x^2+66x^2-594=0\)
\(\Leftrightarrow2x^3\left(x-3\right)+6x^2\left(x-3\right)+66\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(2x^3+6x^2+66x+198\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[2x^2\left(x+3\right)+66\left(x+3\right)\right]\left(x-3\right)=0\)
\(\Leftrightarrow2\left(x+3\right)\left(x^2+33\right)\left(x-3\right)=0\)
\(\Rightarrow x=\pm3\)
Vậy nghiệm \(S=\left\{\pm3\right\}\)
a) Ta có \(AM=AC-MC=AC-MB=b-d\)
Xét tam giác vuông ABM, theo định lý Pi-ta-go ta có:
\(c^2+\left(b-d\right)^2=d^2\Leftrightarrow c^2+b^2-2bd+d^2=d^2\)
\(\Leftrightarrow c^2+b^2-2bd=0\)
Mà tam giác ABC vuông tại A nên \(b^2+c^2=a^2\)
\(\Rightarrow a^2=2bd\Rightarrow4bc=2bd\Rightarrow d=2c\left(đpcm\right)\)
b) Xét tam giác vuông ABM có \(BM=2BA\Rightarrow\widehat{ABM}=60^o\Rightarrow\widehat{AMB}=36^o\)
Xét tam giác cân MBC có \(\widehat{AMB}\) là góc ngoài tại đỉnh cân nên \(\widehat{AMB}=2\widehat{MBC}=2\widehat{MCB}\)
\(\Rightarrow\widehat{MCB}=\widehat{MBC}=\frac{30^o}{2}=15^o\)
Vậy nên \(\widehat{ABC}=\widehat{ABM}+\widehat{MBC}=60^o+15^o=75^o\)
\(\widehat{ACB}=\widehat{MCB}=15^o\)