K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

a) Chứng minh được: \(\Delta\)ABE =  \(\Delta\)ACD => CD = BE 

b ) \(\Delta\)ABE = \(\Delta\)ACD => ^ABE = ^ACD

Gọi H là giao điểm của CD và BE 

=> ^HBD = ^ACD 

Lại có: ^HDB = ^ADC ( đối đỉnh ) 

=> ^HBD + ^HDB = ^ACD + ^ADC = 90 độ 

=> ^DHB = 180o - ( ^HBD + ^HDB ) = 90 độ 

=> CD vuông BE 

c) Xét \(\Delta\)EAD có: ^EAD = 90 độ và  EA = ED => \(\Delta\)EAD vuông cân  => ^EDA = 45 độ 

=> ^MDB = ^EDA = 45 độ ( đối đỉnh )

Ta có: BD vuông AC ; CD vuông BE => D là trực tập \(\Delta\)ECB => ED vuông BC  => ^DMB = 90 độ 

Xét \(\Delta\)DMB có: ^DBM = 180o - ( ^MDB + ^DMB ) = 180 độ - ( 90o + 45) = 45o

=> ^MDB = ^DBM => \(\Delta\)DMB cân tại M => MB = MD

20 tháng 3 2020

Bài 2: Theo cách lớp 7.

H A C B K M

Kẻ BH vuông AC tại H => ^BAH = 180o - ^BAC = 180o - 120o = 60o 

=> \(\Delta\)HBA là nửa tam giác đều  ( học cái này chưa? )

=> AH = \(\frac{1}{2}\).AB = \(\frac{1}{2}\).4 = 2 ( cm ) 

Xét \(\Delta\)HAB vuông tại H có: AH = 2 cm  ; AB = 4 cm 

Dùng định lí Pitago => \(BH^2=AB^2-AH^2=4^2-2^2=12\)=> \(BH=2\sqrt{3}\)(cm)

Xét \(\Delta\)BHC vuông tại H có: \(BH=2\sqrt{3}\)cm ; HC = HA + AC = 2 + 6 = 8 cm

Theo định lí Pitago => \(BC^2=BH^2+HC^2=\left(2\sqrt{3}\right)^2+8^2=76\)=> \(BC=2\sqrt{19}\)( cm )

Vì M là trung điểm BC => \(BM=\sqrt{19}\)cm

Kẻ AK vuông BC tại K 

Ta có: \(S\left(ABC\right)=\frac{1}{2}.BH.AC=\frac{1}{2}AK.BC\)( diện tích tam giác ABC )

=> \(BH.AC=AK.BC\)=> \(2\sqrt{3}.6=AK.2\sqrt{19}\Rightarrow AK=\frac{6\sqrt{57}}{19}\)cm

Xét \(\Delta\)BAK vuông tại K có: \(AB=4cm;AK=\frac{6\sqrt{57}}{19}\)cm

Theo định lí Pitago => \(BK^2=AB^2-AK^2\)=> \(BK=\frac{14\sqrt{19}}{19}\)cm

=>KM = BM - BK = \(\sqrt{19}-\frac{14\sqrt{19}}{19}=\frac{5\sqrt{19}}{19}\)cm

Xét \(\Delta\)AKM có: \(KM=\frac{5\sqrt{19}}{19}\)cm và \(AK=\frac{6\sqrt{57}}{19}\)cm 

=> \(AM^2=AK^2+KM^2=\left(\frac{5\sqrt{19}}{19}\right)^2+\left(\frac{6\sqrt{57}}{19}\right)^2=7\)

=> \(AM=\sqrt{7}\)

20 tháng 3 2020

Đổi: 11 giờ 45 phút = 11,75 giờ

Thời gian đi thực tế nhiều hơn thời gian đi dự định là: 12 - 11,75 = 0,25 ( giờ )

Gọi x ; y lần lượt là thời gian đi 2/3 quãng đường sau theo dự định và  thực tế. ( x; y > 0 , h)

y - x = 0,25

Ta có độ dài 2/3 quãng đường còn lại là:4x = 3y <=> \(\frac{y}{4}=\frac{x}{3}\)

Áp sụng dãy tỉ số bằng nhau ta có:  \(\frac{y}{4}=\frac{x}{3}=\frac{0,25}{4-3}=0,25\)

=> x = 3.0,25 = 0,75 ( h )

Thời gian dự định đi là: 0,75 : 2/3 = 1,125 (h) 

Quãng đường AB dài: 1,125 . 4 = 4,5 ( km)

Người đó khởi hành lúc : 11,75 - 1,125 = 10,625 (h) = 10 h 37,5 phút

20 tháng 3 2020

Ta có: \(x^2-2xy+2y^2+2x-4y+22\)

=  \(x^2-2xy+y^2+2x-2y+1+y^2-2y+1+20\)

\(\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-1\right)^2+20\)

\(=\left(x-y+1\right)^2+\left(y-1\right)^2+20\ge20\)

=> \(A\le\frac{2000}{20}=100\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

=> GTLN của A = 100 khi  x= 0 và y =1

19 tháng 3 2020

a, xét tam giác ODA và tam giác ODB có : OD chung

^DOB = ^DOA do OD là pg của ^BOA (gt)

OA = OB (gt)

=> tam giác ODA = tam giác ODB (c-g-c)

b, t đoán đề là cm OD _|_ AB

tam giác ODA = tam giác ODB (câu a)

=> ^ODA = ^ODB (đn)

mà ^ODA + ^ODB = 180 (kb)

=> ^ODA = 90

=> OD _|_ AB

c, xét tam giác BOE và tam giác AOE có : OE chung

^BOD = ^AOD (câu a)

OB = AO (gt)

=> tam giác BOE = tam giác AOE (c-g-c)

=> EB = EA (đn) => E thuộc đường trung trực của AB 

OB = OA (Gt) => O thuộc đường trung trực của AB

=> OE là trung trực của AB

a, vì AM là tpg của A nên BAM=CAM

xét tam giác AMB & AMC có: BAM=CAM(cmt); AB=AC( tam giác ABC cân tại A); góc B=C( tam giác ABC cân tại A)

=> tam giác AMB=AMC(g.c.g)

b,vì tam giác AMB=AMC nên  góc AMB=AMC

mà AMB+AMC=1800( 2 góc kề bù)=> AMB=AMC=900=> AM vuông góc với BC

vì tam giác AMB=AMC nên BM=CM(2 cạnh tương ứng)

=> BM=CM=BC:2=3 cm

theo định lí PTG, ta có:

AM2+BM2=AB2

hay AM2= AB2- BM2

<=>AM2=52-32=16

=> AM= 4 cm.

c, xét tam giác BHM và CHM: BM=CM(cmt); góc HMB=HMC(=900); HM là cạnh chung=> tam giác BHM=CHM(c.g.c)=>HB=HC(tương ứng)

xét tam giác HBC có HB=HC(cmt) do đó tam giác HBC cân tại H.

có nhiều trường hợp lắm, nên mik làm 2 cáh thui nha:

Cách 1: trường hợp cạnh - cạnh - cạnh

Ta có:    AB = DE

              BC = EF

vậy cần: AC = DF

Cách 2: trường hợp cạnh - góc - cạnh

 Ta có:    AB = DE

               BC = EF

Vậy cần \(\widehat{ABC}=\widehat{DEF}\)

hok tốt!!

19 tháng 3 2020

để tam giác ABC= tam giác DEF theo trường hợp c-c-c thì ta cần thêm điều kiện AC=DF

...............................................................................c-g-c..........................................góc A = góc D

Chúc bạn học tốt