K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

dùng định lí Bê du bạn nhé

22 tháng 11 2018

Phạm Minh Đức đúng ròi đó :)

f(x) = ( x1999 + x999 + x99 + x9 + 2004 ) : ( x2 - 1 )

f(x) = ( x1999 + x999 + x99 + x9 + 2004 ) : ( x - 1 ) ( x + 1 )

Áp dụng định lý Bezout ta có 2 đa thức dư :

+) f(1) = 11999 + 1999 + 199 + 19 + 2004 = 2008

+) f(-1) = (-1)1999 + (-1)999 + (-1)99 + (-1)9 + 2004 = 2000

Vậy phép chia trên có 2 đa thức dư là f(1) = 2008 và f(-1) = 2000

18 tháng 7 2023

em chịu 

 

21 tháng 11 2018

Ta có ΔDCN=ΔCBM

ΔDCN=ΔCBM

⇒⇒ góc NDC bằng góc MCB

mà góc MCB hợp với góc MCD 1 góc 90o90o

Nên góc NCD hợp với góc MCD 1 góc  90o90o

⇒⇒ góc DIC bằng  90o90o 

⇒⇒ DN vuông MC

Gọi K là trung điểm DC

Ta có AM=KC

AM song song KC

nên AMCK là hình bình hành

⇒⇒ AK song song MC

mà MC vuông DN

nên AK vuông DN

Ta có K là trung điểm DC

AK song song MC

nên AK đi qua trung điểm DI ( đường trung bình)

Gọi L là giao điểm DN và AK ⇒ L là trung điểm DI

Tam giác ADI có AL là đường cao

AL là đường trung tuyến

nên tam giác ADI cân tại A ⇒ AD=AI

Vậy tam giác AID cân tại I.

21 tháng 11 2018

dai the

3 tháng 3 2022

mik chậm tay rùi, ko vào được khocroikhocroikhocroi

21 tháng 11 2018

Ta có: 5( x + 2 ) - x2- 2x = 0

=> 5x + 10 - x2 - 2x = 0

=> x2 - 3x + 10 = 0

=> (x2 + 2x) - (5x - 10 ) = 0

=> (x-5)(x-2)=0

=> x = 5 hoặc x = 2.

21 tháng 11 2018

\(5\left(x+2\right)-x^2-2x=0\)

\(\Leftrightarrow5x+10-x^2-2x=0\)

\(\Leftrightarrow-x^2+3x+10=0\)

\(\Leftrightarrow-x^2-2x+5x+10=0\)

\(\Leftrightarrow-x\left(x+2\right)+5\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(5-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\5-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=5\end{cases}}}\)

21 tháng 11 2018

123+456+78+123+456 =1824

Trả lời:

123+456+78+123+456 = 1236

tên : Iza ; lp 8 ; trường: ko bik; tên thật: ko nhớ; ny: chưa xác định; 2k5

21 tháng 11 2018

Ta có: (x+y)6 + (x-y)6 = \(\left(x+y\right)^{2^3}+\left(x-y\right)^{2^3}\)

=\(\left(\left(x+y\right)^2+\left(x-y\right)^2\right)\left(\left(x+y\right)^4-\left(x+y\right)^2\left(x-y\right)^2+\left(x-y\right)^4\right)\)

= 2(x2+y2)\(\left(\left(x+y\right)^4-\left(x+y\right)^2\left(x-y\right)^2+\left(x-y\right)^4\right)\)

Cái trên chia hết cho G(x) vì có thừa số 2(x2+y2) chia hết