Giúp mình với mình đang cần gấp
(15.3^42-9^20):27^13
Ai nhanh và đúng thì mình tích nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
"Nếu viết thêm chữ số 1 vào bên trái số bé thì được số lớn" Nên hiệu 2 số bằng 1000.
Giải bài toán "Tổng-Hiệu"
- Số bé là: (2870-1000) : 2 = 935
- Số lớn là: 1935
đk k cậu
Viết thêm chữ số 1 vào trái số bé được số lớn => Số lớn hơn số bé 1000 đơn vị
Số bé là:
(2870 - 1000):2= 935
Số lớn là:
935+1000 = 1935
Đ.số: Số bé 935 và số lớn 1935
\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{120}\left(a\right)\)
\(\Rightarrow A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+\dfrac{1}{177}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A>25.\dfrac{1}{125}+25.\dfrac{1}{150}+25.\dfrac{1}{175}+25.\dfrac{1}{200}\)
\(\Rightarrow A>\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\)
\(\Rightarrow A>\dfrac{168+140+120+105}{840}=\dfrac{533}{840}>\dfrac{5}{8}\left(\dfrac{533}{840}>\dfrac{525}{840}\right)\)
\(\Rightarrow A>\dfrac{5}{8}\left(1\right)\)
\(\left(a\right)\Rightarrow A=\left(\dfrac{1}{101}+...\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A< 20.\dfrac{1}{100}+20.\dfrac{1}{120}+20.\dfrac{1}{140}+20.\dfrac{1}{160}+20.\dfrac{1}{180}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{504+420+360+315+280}{2520}=\dfrac{1879}{2520}< \dfrac{3}{4}\left(\dfrac{1879}{2520}< \dfrac{1890}{2520}\right)\)
\(\Rightarrow A< \dfrac{3}{4}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{5}{8}< A< \dfrac{3}{4}\left(dpcm\right)\)
\(\left(a+3\right)\left(3a+4\right)\)
-Với \(a\) là số lẻ
\(\Rightarrow a+3\) là số chẵn
\(\Rightarrow\left(a+3\right)\left(3a+4\right)⋮2\left(1\right)\)
-Với \(a\) là số chẵn
\(\Rightarrow3a⋮2\)
\(\Rightarrow3a+4⋮2\)
\(\Rightarrow\left(a+3\right)\left(3a+4\right)⋮2\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow dpcm\)
Để chứng minh rằng (a+3)(3a+4) chia hết cho 2, ta cần chứng minh rằng tổng của hai số này chia hết cho 2.
Ta có:
(a+3)(3a+4) = 3a^2 + 4a + 9a + 12 = 3a^2 + 13a + 12
Để chứng minh rằng 3a^2 + 13a + 12 chia hết cho 2, ta xét hai trường hợp:
1. Khi a là số chẵn:
Nếu a là số chẵn, ta có thể viết a = 2k, với k là một số nguyên.
Thay a = 2k vào biểu thức 3a^2 + 13a + 12, ta được:
3(2k)^2 + 13(2k) + 12 = 12k^2 + 26k + 12 = 2(6k^2 + 13k + 6)
Vì 6k^2 + 13k + 6 là một số nguyên, nên biểu thức trên chia hết cho 2.
2. Khi a là số lẻ:
Nếu a là số lẻ, ta có thể viết a = 2k + 1, với k là một số nguyên.
Thay a = 2k + 1 vào biểu thức 3a^2 + 13a + 12, ta được:
3(2k + 1)^2 + 13(2k + 1) + 12 = 12k^2 + 30k + 28 = 2(6k^2 + 15k + 14)
Vì 6k^2 + 15k + 14 là một số nguyên, nên biểu thức trên chia hết cho 2.
Vậy, ta đã chứng minh được rằng (a+3)(3a+4) chia hết cho 2.
Bài 7"
a, Chiều dài khu đất:
5/4 x 36 = 45(m)
Diện tích khu đất:
36 x 45=1620(m2)
b, Diện tích đất làm vườn:
1620 x 75%= 1215(m2)
Diện tích đất làm nhà ở:
1620 - 1215= 405(m2)
Đ.số: a,1620m2 ; b,405m2
Bài 5:
Chiều cao hình tam giác:
2,5 : 5/7 = 3,5(dm)
Diện tích hình tam giác:
(2,5 x 3,5):2=4,375(dm2)
Đ.số: 4,375dm2
Bài 1: Hình vuông c. Hình tam giác a,e
Ta có: x^2 - 12x + 33 = (x^2 - 12x + 36) - 3 = (x - 6)^2 - 3.
Vậy hàm số y = x^2 - 12x + 33 có giá trị nhỏ nhất là -3, khi x = 6.
2. Sử dụng công thức tính đạo hàm:
Đạo hàm của hàm số y = x^2 - 12x + 33 là y' = 2x - 12.
Để tìm giá trị nhỏ nhất, ta giải phương trình y' = 0:
2x - 12 = 0
=> 2x = 12
=> x = 6.
Khi x = 6, ta có y = 6^2 - 12*6 + 33 = -3.
Vậy giá trị nhỏ nhất của hàm số y = x^2 - 12x + 33 là -3, khi x = 6.
\(A=x^2-12x+33\)
\(A=x^2-12x+36-3\)
\(A=\left(x-6\right)^2-3\)
mà \(\left(x-6\right)^2\ge0,\forall x\)
\(\Rightarrow A=\left(x-6\right)^2-3\ge0-3=-3\)
\(\Rightarrow GTNN\left(A\right)=-3\left(x=6\right)\)
a) Hệ phương trình có nghiệm duy nhất là
\(\left\{{}\begin{matrix}2x-y=3\\x+4y=6\end{matrix}\right.\)
b) Hệ phương trình có vô số nghiệm là
\(\left\{{}\begin{matrix}2x-y=3\\4x-2y=6\end{matrix}\right.\)
\(999\) là số có 3 chữ số lẻ lớn nhất chia hết cho 9
\(117\) là số có 3 chữ số lẻ nhỏ nhất chia hết cho 9
\(\left(999-117\right):9+1=99\)
\(\Rightarrow99\) chữ số thỏa đề bài
Có số số lẻ có 3 chữ số mà chia hết cho 9 là:
(999-105):6+1=150.
\(\left(15.3^{42}-9^{20}\right):27^3\)
\(=\left(5.3.3^{42}-3^{40}\right):3^9\)
\(=\left(5.3^{43}-3^{40}\right):3^9\)
\(=3^{40}\left(5.3^3-1\right):3^9\)
\(=3^{31}\left(5.3^3-1\right)\)
\(=134.3^{31}\)
\(\left(15.3^{42}-9^{20}\right):27^3=15.3^{42}:27^3-9^{20}:27^3\\ \\ =15.3^{42}:\left(3^3\right)^3-9^{20}:9^3:3^3=15.3^{33}-\left(3^2\right)^{20}:\left(3^2\right)^3:3^3\)
\(=15.3^{33}-3^{40}:3^6:3^3=15.3^{33}-3^{31}\\ \\ =15.3^2.3^{31}-3^{31}=135.3^{31}-3^{31}\\ \\ =3^{31}.\left(135-1\right)=3^{31}.134\)