K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

Ta có: \(\Delta=16-12=4\)=> ymax=-\(\frac{\Delta}{4a}=-\frac{4}{4}=-1\); xmax=2

=> Đỉnh của Parapon là: (2; -1)

Đồ thị cắt trục hoành tại 2 điểm là nghiệm của PT: x2-4x+3=0

<=> x2-4x+4-1=0 <=> (x-2)2-1=0 <=> (x-2-1)(x-2+1)=0 <=> (x-3)(x-1)=0

=> x1=1 => y1=0

Và x2=3 => y2=0

y x -1 -2 -3 O 1 3 2 3

8 tháng 12 2017

gọi (d): y=(m-1)x+2n ; (d'): y=x-2

điều kiện để (d) là hsbn: m khác 1

điều kiện để (d) // (d'): {\(\hept{\begin{cases}m-1=1==>m=2\\2nkhác-2==>nkhác-1\end{cases}}\)

thay m=2 vào (d) ta có y=x+2n

do (d) đi qua (1;4)=> 4=1+2n => n=3/2

vậy với m=2, n=3/2 thì thỏa mãn đề bài

8 tháng 12 2017

hình bạn tự kẻ nha

a>   Xét tam giác ADE và tam giác AHB có : góc DAE = HAB(đối đỉnh);  góc ADE = góc AHB = 90 độ; AD = AH = bán kính==> tg ADE = AHB (c.g.v_g.n.k)

b>    vì tg ADE = AHB ==> AE = AB ==> A là trung điểm của BE (1)

        xét tg CBE ta thấy CA vuông góc với AB ==> CA là đường cao (2)

         từ (1) và (2) ==> tg CBE cân tại C

c>    vì tg CBE cân tại C ==> CA vừa là đường cao vừa là tia pg xuất phát từ đỉnh C ==> góc ACH = ACI 

        xét tg ACH và tg ACI có: góc AHC = AIC = 90 độ;  AC là cạnh chung; góc ACH = ACI(cmt) ==> tg ACH = ACI (c.h_g.n)

                                                                                                                                                            => AH=AI=bán kính (3)

         mặt khác AI vuông góc với CE (4)

         từ (3) và (4) ==> CE là tiếp tuyến ( khoảng cách từ tâm đến đường thẳng bằng bán kính)

8 tháng 12 2017

neu du kha nag minh se lam

8 tháng 12 2017

a, AC=AB= 12 cm.

b,BH= 60/13 cm

8 tháng 12 2017

đặt \(A=\frac{2n+6}{n+1}=\frac{2n+2+4}{n+1}=\frac{2\left(n+1\right)}{n+1}+\frac{4}{n+1}\)

Để A tối giản thì \(2n+6⋮n+1\)mà  \(\frac{2\left(n+1\right)}{n+1}⋮n+1\)nên \(4⋮n+1\)

\(4⋮n+1\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;-2;1;-3;3;-5\right\}\)

Vì \(n\in N\Rightarrow n\in\left\{0;1;3\right\}\)

8 tháng 12 2017

https://olm.vn/hoi-dap/question/1095832.html

Câu hỏi của em đã được trả lời tại đây nhé.

8 tháng 12 2017

\(P=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=\frac{a}{a}-\frac{1}{a}+\frac{b}{b}-\frac{1}{b}+\frac{c}{c}-\frac{4}{c}\)

=> \(P=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)(1)

Ta lại có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0< =>a+b-2\sqrt{ab}\ge0=>\frac{\left(a+b\right)^2}{4}\ge ab\)

<=> \(\frac{a+b}{ab}\ge\frac{4}{a+b}< =>\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\left(\frac{4}{a+b+c}\right)\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge4\left(\frac{4}{6}\right)=\frac{16}{6}=\frac{8}{3}\)(Do a+b+c=6 theo gt)

Thay vào (1), suy ra:

\(P=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)

=> GTLL của P là: \(P=\frac{1}{3}\)

Dấu '=' xảy ra khi a=b và a+b=c => c=3; a=b=1,5

8 tháng 12 2017

minh ko biet