Giuap em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)
Do đó: ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>\(\widehat{ECB}=\widehat{DBC}\)
=>\(\widehat{HBC}=\widehat{HCB}\)
=>ΔHBC cân tại H
ta có: HB=HC
=>H nằm trên đường trung trực của BC(1)
ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AH là đường trung trực của BC
a: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-52^0}{2}=\dfrac{128^0}{2}=64^0\)
Xét ΔABC có \(\widehat{ACB}>\widehat{BAC}\)
mà AB,BC lần lượt là cạnh đối diện của các góc ACB,BAC
nên AB>BC
b: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Bài 5:
a: Xét ΔNMI vuông tại M và ΔNKI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔNMI=ΔNKI
b: Ta có: ΔNMI=ΔNKI
=>IM=IK
mà IK<IP(ΔIKP vuông tại K)
nên IM<IP
c: Xét ΔIMQ vuông tại M và ΔIKP vuông tại K có
IM=IK
\(\widehat{MIQ}=\widehat{KIP}\)(hai góc đối đỉnh)
Do đó: ΔIMQ=ΔIKP
=>IQ=IP
=>ΔIQP cân tại I
Xét ΔNQP có
QK,PM là các đường cao
QK cắt PM tại I
Do đó: I là trực tâm của ΔNQP
=>NI\(\perp\)PQ tại D
Bài 3:
Chiều dài hình chữ nhật là:
\(\dfrac{6x^2+7x-3}{3x-1}\)
\(=\dfrac{6x^2-2x+9x-3}{3x-1}\)
\(=\dfrac{2x\left(3x-1\right)+3\left(3x-1\right)}{3x-1}=2x+3\left(cm\right)\)
Bài 2:
a: \(A\left(x\right)=4x^2+4x+1\)
Bậc là 2
Hạng tử tự do là 1
Hạng tử cao nhất là \(4x^2\)
b: B(x)-A(x)
\(=5x^2+5x+1-4x^2-4x-1\)
=x2+x
Bài 5:
Gọi A là biến cố "lấy ra được viên bi xanh"
=>n(A)=1
Số viên bi trong hộp là 1+9=10(viên)
=>Xác suất của biến cố A là \(\dfrac{1}{10}\)
Câu 4:
Chiều rộng khu đất là:
\(\dfrac{4x^2+4x-3}{2x+3}\)
\(=\dfrac{4x^2+6x-2x-3}{2x+3}\)
\(=\dfrac{2x\left(2x+3\right)-\left(2x+3\right)}{2x+3}=2x-1\left(m\right)\)
Câu 6:
a: Xét ΔABC có BA<AC
mà \(\widehat{ACB};\widehat{ABC}\) lần lượt là góc đối diện của các cạnh AB,AC
nên \(\widehat{ACB}< \widehat{ABC}\)
b: Xét ΔBAM và ΔBDM có
BA=BD
\(\widehat{ABM}=\widehat{DBM}\)
BM chung
Do đó: ΔBAM=ΔBDM
=>MA=MD
a: Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC
AI chung
Do đó: ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>IB=IC
=>I là trung điểm của BC
ΔAIB=ΔAIC
=>\(\widehat{IAB}=\widehat{IAC}\)
=>AI là phân giác của góc BAC
c: E là trung điểm của BI
=>\(BE=EI=\dfrac{BI}{2}=\dfrac{CI}{2}\)
=>\(\dfrac{CI}{CE}=\dfrac{2}{3}\)
Xét ΔCAK có
CE là đường trung tuyến
\(CI=\dfrac{2}{3}CE\)
Do đó: I là trọng tâm của ΔCAK
Xét ΔCAK có
I là trọng tâm
F là trung điểm của AC
Do đó: K,I,F thẳng hàng
Bài 1b;
\(x^2\) - a\(x\) + 3 ⋮ \(x\) - 3
Theo bezout ta có: \(x^2\) - a\(x\) + 3 ⋮ \(x\) - 3
⇔32 - a.3 + 3 = 0
\ 9 - 3a + 3 = 0
12 - 3a = 0
3a = 12
a = 12 : 3
a = 4
Vậy \(x^2\) - a\(x\) + 3 \(⋮\) \(x\) - 3 khi a = 4
a: Xét ΔMAB và ΔMCD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD
Do đó: ΔMAB=ΔMCD
b: Xét ΔCBD có
CM,DN là các đường trung tuyến
CM cắt DN tại G
Do đó: G là trọng tâm của ΔCBD
c: Bạn ghi lại đề đi bạn
Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường trung tuyến BM. Trên tia đối của tia MB, lấy điểm D sao cho M là trung điểm của BD,
a) Chứng minh: tam giác ABM = tam giác CDM.
b) Gọi N là trung điểm của BC, DN cắt AC tại G. Chứng minh: G là trọng tâm của tam giác BCD.
c) CMR: BM-BND < 1/2 BA
Để chứng minh các phát biểu đã cho:
a) Ta có:
\[IM = \frac{AM}{\sqrt{2}}\]
\[= \frac{AP + PM}{\sqrt{2}} - \frac{AQ + MQ}{\sqrt{2}}\]
\[= \frac{AP}{\sqrt{2}} - \frac{AQ}{\sqrt{2}}\]
\[= \frac{PM - MQ}{\sqrt{2}}\]
\[= \frac{PM - MQ}{2}\]
Vậy, a) được chứng minh.
b) Góc CMQ là góc giữa đường thẳng MQ và phân giác của góc A, vì vậy góc CMQ chính bằng một nửa của sự chênh lệch giữa các góc \(ABC\) và \(C\).
\[ \angle CMQ = \frac{1}{2} (\angle ABC - \angle C) \]
c) Để chứng minh \(BP = QC\), chúng ta sẽ sử dụng định lý Phân Tỉ của đường thẳng song song, nghĩa là \(BP/CQ = BM/CM = 1/1\), từ đó suy ra \(BP = QC\).
Vậy, c) cũng được chứng minh.
Do đó, lời giải là:
a) \(IM = \frac{PM - MQ}{2}\)
b) \(Góc CMQ = \frac{(^ABC-^C)}{2}\)
c) \(BP = QC\) tui ko chắc