Câu 1. (2 điểm) Từ một nhóm $30$ học sinh lớp 10 gồm $15$ học sinh lớp A, $10$ học sinh lớp B và $5$ học sinh lớp C. Có bao nhiêu cách chọn ra $15$ học sinh sao cho có ít nhất $5$ học sinh lớp A và có đúng $2$ học sinh lớp C?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cả hai ngày đội công nhân làm được là:
2/7+2/3=20/21 (quãng đường)
Vậy...
Cả hai ngày đội công nhân làm được số phần của quãng đường là :
2/7 + 2/3 = 20/21 ( quãng đường )
đáp số : ....
Để chọn ra 3 người có cả nam và nữ đi trực nhật thì có 2 phương án thực hiện: Chọn 1 nam, 2 nữ và chọn 1 nữ, 2 nam.
Xét phương án thứ nhất, có \(C^1_4=4\) cách chọn 1 bạn nam, \(C^2_3=3\) cách chọn 2 bạn nữ. Vậy có tất cả là \(4.3=12\) cách chọn.
Xét phương án thứ hai, có \(C^1_3=3\) cách chọn 1 bạn nữ và \(C^2_4=6\) cách chọn 2 bạn nam. Vậy có tất cả \(3.6=18\) cách chọn.
Như vậy, có tất cả là \(12+18=30\) cách chọn.
Gõ đề có sai không ạ?
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)
Cộng theo vế HPT2
\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)
\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)
Có:
\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)
\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)
Lời giải:
Nhân chéo 2 pt ta có:
$20y^2(x^2-y^2)=3x^2(x^2+y^2)$
$\Leftrightarrow 3x^4+20y^4-17x^2y^2=0$
$\Leftrightarrow (3x^2-5y^2)(x^2-4y^2)=0$
$\Rightarrow x=\pm \sqrt{\frac{5}{3}}y$ hoặc $x=\pm 2y$
Đến đây thay vào pt ban đầu để tìm $x,y$
ĐKXĐ : \(x;y\ne0\)
Ta có \(\dfrac{y}{x}-\dfrac{2x}{y}=\dfrac{-5}{2}-\dfrac{2}{xy}\)
\(\Leftrightarrow\dfrac{y^2-2x^2}{xy}=\dfrac{-5xy-4}{2xy}\)
\(\Leftrightarrow2y^2-4x^2+5xy=-4\) (1)
Kết hợp \(x^2+xy-y^2=5\) (2)
ta có : \(-5.\left(2y^2-4x^2+5xy\right)=4\left(x^2+xy-y^2\right)\)
\(\Leftrightarrow16x^2-29xy-6y^2=0\)
\(\Leftrightarrow16x^2-32xy+3xy-6y^2=0\)
\(\Leftrightarrow\left(x-2y\right)\left(16x+3y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-\dfrac{3y}{16}\end{matrix}\right.\)
Thay \(x=-\dfrac{3y}{16}\) vào (2) ta được
\(\dfrac{9y^2}{256}-\dfrac{3y^2}{16}-y^2=5\)
\(\Leftrightarrow y^2=-\dfrac{256}{59}\Leftrightarrow y\in\varnothing\) (loại)
Khi x = 2y thay vào (2) ta được
4y2 + 2y2 - y2 = 5
\(\Leftrightarrow y=\pm1\) (tm)
Với y = 1 => x = 2
y = -1 => x = -2
Vậy (x;y) = (2;1) ; (-2;-1)
a) Ta đặt mẫu chung là: abcd (a khác 0)
- Có 9 cách chọn a
- Có 9 cách chọn b
- Có 8 cách chọn c
- Có 7 cách chọn d
Ta lập được là: 9 x 9 x 8 x 7 = 4536 (số)
b) Ta đặt mẫu chung là: abcd
- Có 5 cách chọn a
- Có 4 cách chọn b
- Có 3 cách chọn c
- Có 2 cách chọn d
Ta lập được là: 5 x 4 x 3 x 2 = 120 (số)
c) Ta lập dãy số: 1000; 1005; 1010;...; 9995
Quy luật: Mỗi số hạng liên tiếp liền kề sẽ cách nhau 5 đơn vị
Áp dụng công thức dãy số cách đều, ta có số số hạng là:
(9995 - 1000) : 5 + 1 = 1800 (số)
d) Ta đặt mẫu chung là: abcd (d = 0 hoạc 5)
Trường hợp d = 0
- Có 9 cách chọn a
- Có 8 cách chọn b
- Có 7 cách chọn c
Trong trường hợp này, ta lập được là: 9 x 8 x 7 = 504 (số)
Trường hợp d = 5
- Có 8 cách chọn a
- Có 8 cách chọn b
- Có 7 cách chọn c
Trong trường hợp này, ta lập được là: 8 x 8 x 7 = 448 (số)
Ta lập được là: 504 + 448 = 952 (số)
Đ/S
HT
`[x+35]/1984-[x+30]/1989+[x+19]/2000+[x+23]/[1996=-2`
`<=>[x+35]/1984+1-[x+30]/1989-1+[x+19]/2000+1+[x+23]/1996+1=0`
`<=>[x+2019]/1984-[x+2019]/1989+[x+2019]/2000+[x+2019]/1996=0`
`<=>(x+2019)(1/1984-1/1989+1/2000+1/1996)=0`
`=>x+2019=0`
`<=>x=-2019`
\(\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}\text{=}-2\)
\(\Leftrightarrow\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}+3-1\text{=}0\)
\(\Leftrightarrow\left(\dfrac{x+35}{1984}+1\right)-\left(\dfrac{x+30}{1989}+1\right)+\left(\dfrac{x+19}{2000}+1\right)+\left(\dfrac{x+23}{1996}+1\right)\text{=}0\)
\(\Leftrightarrow\dfrac{x+2019}{1984}-\dfrac{x+2019}{1989}+\dfrac{x+2019}{2000}+\dfrac{x+2019}{1996}\text{=}0\)
\(\Leftrightarrow\left(x+2019\right)\left(\dfrac{1}{1984}-\dfrac{1}{1989}+\dfrac{1}{2000}+\dfrac{1}{1996}\right)\text{=}0\)
\(\Leftrightarrow\left(x+2019\right)\text{=}0\)
\(\Leftrightarrow x\text{=}-2019\)
+ Bước 1: Chọn 2 học sinh khối C, 13 học sinh khối B hoặc khối A có C25C1325C52C2513 cách.
+ Bước 2: Chọn 2 học sinh khối C, 13 học sinh khối B và khối A không thỏa mãn yêu cầu.
- Trường hợp 1: Chọn 2 học sinh khối C, 10 học sinh khối B và 3 học sinh khối A có C25C1010C315C52C1010C153 cách.
- Trường hợp 2: Chọn 2 học sinh khối C, 9 học sinh khối B và 4 học sinh khối A có C25C910C415C52C109C154 cách.
Vậy có C25(C1325−C1010C315−C910C415)=51861950C52C2513−C1010C153−C109C154=51861950 cách.