K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2023

+ Bước 1: Chọn 2 học sinh khối C, 13 học sinh khối B hoặc khối A có C25C1325C52C2513 cách.

+ Bước 2: Chọn 2 học sinh khối C, 13 học sinh khối B và khối A không thỏa mãn yêu cầu.

- Trường hợp 1: Chọn 2 học sinh khối C, 10 học sinh khối B và 3 học sinh khối A có C25C1010C315C52C1010C153 cách.

   

- Trường hợp 2: Chọn 2 học sinh khối C, 9 học sinh khối B và 4 học sinh khối A có C25C910C415C52C109C154 cách.

Vậy có C25(C1325C1010C315C910C415)=51861950C52C2513−C1010C153−C109C154=51861950 cách.

22 tháng 2 2023

Cả hai ngày đội công nhân làm được là:

2/7+2/3=20/21 (quãng đường)

Vậy...

22 tháng 2 2023

Cả hai ngày đội công nhân làm được số phần của quãng đường là :

2/7 + 2/3 = 20/21 ( quãng đường )

đáp số : ....

9 tháng 2 2023

theo mình thấy là có 2 cách

1: 2nam 1 nữ 

2: 2 nữ 1 nam

13 tháng 2 2023

Để chọn ra 3 người có cả nam và nữ đi trực nhật thì có 2 phương án thực hiện: Chọn 1 nam, 2 nữ và chọn 1 nữ, 2 nam.

Xét phương án thứ nhất, có \(C^1_4=4\) cách chọn 1 bạn nam, \(C^2_3=3\) cách chọn 2 bạn nữ. Vậy có tất cả là \(4.3=12\) cách chọn.

Xét phương án thứ hai, có \(C^1_3=3\) cách chọn 1 bạn nữ và \(C^2_4=6\) cách chọn 2 bạn nam. Vậy có tất cả \(3.6=18\) cách chọn.

Như vậy, có tất cả là \(12+18=30\) cách chọn.

8 tháng 2 2023

Gõ đề có sai không ạ?

\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)

Cộng theo vế HPT2

\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)

\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)

Có:

\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)

\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)

 

 

AH
Akai Haruma
Giáo viên
8 tháng 2 2023

Lời giải:

Nhân chéo 2 pt ta có:

$20y^2(x^2-y^2)=3x^2(x^2+y^2)$

$\Leftrightarrow 3x^4+20y^4-17x^2y^2=0$

$\Leftrightarrow (3x^2-5y^2)(x^2-4y^2)=0$

$\Rightarrow x=\pm \sqrt{\frac{5}{3}}y$ hoặc $x=\pm 2y$

Đến đây thay vào pt ban đầu để tìm $x,y$

8 tháng 2 2023

ĐKXĐ : \(x;y\ne0\)

Ta có \(\dfrac{y}{x}-\dfrac{2x}{y}=\dfrac{-5}{2}-\dfrac{2}{xy}\)

\(\Leftrightarrow\dfrac{y^2-2x^2}{xy}=\dfrac{-5xy-4}{2xy}\)

\(\Leftrightarrow2y^2-4x^2+5xy=-4\) (1) 

Kết hợp \(x^2+xy-y^2=5\) (2)

ta có : \(-5.\left(2y^2-4x^2+5xy\right)=4\left(x^2+xy-y^2\right)\) 

\(\Leftrightarrow16x^2-29xy-6y^2=0\)

\(\Leftrightarrow16x^2-32xy+3xy-6y^2=0\)

\(\Leftrightarrow\left(x-2y\right)\left(16x+3y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-\dfrac{3y}{16}\end{matrix}\right.\)

Thay \(x=-\dfrac{3y}{16}\) vào (2) ta được 

\(\dfrac{9y^2}{256}-\dfrac{3y^2}{16}-y^2=5\)

\(\Leftrightarrow y^2=-\dfrac{256}{59}\Leftrightarrow y\in\varnothing\) (loại) 

Khi x = 2y thay vào (2) ta được 

4y2 + 2y2 - y2 = 5

\(\Leftrightarrow y=\pm1\) (tm)

Với y = 1 => x = 2

y = -1 => x = -2

Vậy (x;y) = (2;1) ; (-2;-1) 

8 tháng 2 2023

a) Ta đặt mẫu chung là: abcd (a khác 0)

- Có 9 cách chọn a

- Có 9 cách chọn b

- Có 8 cách chọn c

- Có 7 cách chọn d

Ta lập được là: 9 x 9 x 8 x 7 = 4536 (số)

b) Ta đặt mẫu chung là: abcd

- Có 5 cách chọn a

- Có 4 cách chọn b

- Có 3 cách chọn c

- Có 2 cách chọn d

Ta lập được là: 5 x 4 x 3 x 2 = 120 (số)

c) Ta lập dãy số: 1000; 1005; 1010;...; 9995

Quy luật: Mỗi số hạng liên tiếp liền kề sẽ cách nhau 5 đơn vị

Áp dụng công thức dãy số cách đều, ta có số số hạng là:

(9995 - 1000) : 5 + 1 = 1800 (số)

d) Ta đặt mẫu chung là: abcd (d = 0 hoạc 5)

Trường hợp d = 0

- Có 9 cách chọn a

- Có 8 cách chọn b

- Có 7 cách chọn c

Trong trường hợp này, ta lập được là: 9 x 8 x 7 = 504 (số)

Trường hợp d = 5

- Có 8 cách chọn a

- Có 8 cách chọn b

- Có 7 cách chọn c

Trong trường hợp này, ta lập được là: 8 x 8 x 7 = 448 (số)

Ta lập được là: 504 + 448 = 952 (số)

Đ/S

HT

8 tháng 2 2023

`[x+35]/1984-[x+30]/1989+[x+19]/2000+[x+23]/[1996=-2`

`<=>[x+35]/1984+1-[x+30]/1989-1+[x+19]/2000+1+[x+23]/1996+1=0`

`<=>[x+2019]/1984-[x+2019]/1989+[x+2019]/2000+[x+2019]/1996=0`

`<=>(x+2019)(1/1984-1/1989+1/2000+1/1996)=0`

  `=>x+2019=0`

`<=>x=-2019`

8 tháng 2 2023

\(\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}\text{=}-2\)

\(\Leftrightarrow\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}+3-1\text{=}0\)

\(\Leftrightarrow\left(\dfrac{x+35}{1984}+1\right)-\left(\dfrac{x+30}{1989}+1\right)+\left(\dfrac{x+19}{2000}+1\right)+\left(\dfrac{x+23}{1996}+1\right)\text{=}0\)

\(\Leftrightarrow\dfrac{x+2019}{1984}-\dfrac{x+2019}{1989}+\dfrac{x+2019}{2000}+\dfrac{x+2019}{1996}\text{=}0\)

\(\Leftrightarrow\left(x+2019\right)\left(\dfrac{1}{1984}-\dfrac{1}{1989}+\dfrac{1}{2000}+\dfrac{1}{1996}\right)\text{=}0\)

\(\Leftrightarrow\left(x+2019\right)\text{=}0\)

\(\Leftrightarrow x\text{=}-2019\)