K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2017

ab+bc+ca=3abc <=> ab+bc+ca-3abc=0 <=> ab-abc+bc-abc+ca-abc=0 <=> ab(1-c)+bc(1-a)+ca(1-b)=0

Vì a,b,c dương => \(\hept{\begin{cases}1-c=0< =>c=1\\1-a=0< =>a=1\\1-b=0< =>b=1\end{cases}}\)

Thay a,b,c vừa tìm được vào biểu thức P <=> P=3/2

9 tháng 12 2017

áp dụng BDT cô si ta có

\(a^2+1>=2a\)

\(b^2+1>=2b\)

\(c^2+1>=2c\)

do đó P<=\(\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

=\(\frac{1}{2}.\frac{3abc}{abc}=1,5\)

dấu = xảy ra khi và chỉ khi a=b=c=1

9 tháng 12 2017

Ta có :\(.\hept{\begin{cases}x+y+z=1\\x^4+y^4+z^4=xyz\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=1\\x^4+y^4+z^4=xyz\left(x+y+z\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\x^4+y^4+z^4=x^2yz+xy^2z+xyz^2\end{cases}}\)

Áp dụng bđt AM - GM ta có : 

\(x^2yz\le\frac{x^4+x^4+y^4+z^4}{4}=\frac{2x^4+y^4+z^4}{4}\)

\(xy^2z\le\frac{x^4+y^4+y^4+z^4}{4}=\frac{x^4+2y^4+z^4}{4}\)

\(xyz^2\le\frac{x^4+y^4+z^4+z^4}{4}=\frac{x^4+y^4+2z^4}{4}\)

\(\Rightarrow x^2yz+xy^2z+xyz^2\le\frac{4\left(x^4+y^4+z^4\right)}{4}=x^4+y^4+z^4\)

Mà hệ phương trình lại cho \(x^2yz+xy^2z+xyz^2=x^4+y^4+z^4\)

\(\Rightarrow x=y=z\)

Kết hợp với đề bài ta được : \(\hept{\begin{cases}x+y+z=1\\x=y=z\end{cases}\Rightarrow x=y=z=\frac{1}{3}}\)

9 tháng 12 2017

mik lp6

nên k bít

xin lỗi ha

6 tháng 2 2018

\(PT\Leftrightarrow\left(x^2-4xy+4y^2\right)+4x-8y+4+y^2-16=0\)

\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)+4+y^2=16\)

\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)

Vì \(\left(x+2y+2\right)^2+y^2\) là tổng hai số chính phương 

nên \(\left(\left(x+2y+2\right)^2;y^2\right)\in\left\{0;16\right\}\)xét 2 TH là ra

x=2,y=2,z=4

8 tháng 7 2018

lời giải

9 tháng 12 2017

áp dụng bđt phụ

\(x^2+y^2+z^2>=xy+xz+yz\)

ta đượcp>=12

12 tháng 12 2017

nham. thuc ra

áp dụng bdt cô si ta có

\(\frac{a^4}{b\left(c+a\right)^2}+b>=\frac{a^2}{c+a}\)

cm tương tự 

do do P+a+b+c>=\(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}\)

áp dụng bất đẳng thức bunhiacopxki ta có

\(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}>=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{12}{2}=6\)

=>P>=-6

dau = xay ra<=>

\(\hept{\begin{cases}\frac{a^4}{b\left(c+a\right)^2}=b\\\frac{b^4}{c\left(a+b\right)^2}=c\end{cases}}va\hept{\begin{cases}\frac{c^4}{a\left(b+c\right)^2}=c\\\frac{\left(c+a\right)^2}{a^2}=\frac{\left(a+b\right)^2}{b^2}=\frac{\left(b+c\right)^2}{c^2}\\a+b+c=12\end{cases}}\)

<=>a=b=c=4(tm)