lý nâng cao : 1 xe chỡ hàng có khối lượng 15 tấn xe chở 3 thùng, 1 thùng cóf các cạnh 2 m tính kl của xe chở hàng khi đâng chở.biết klr của thùng hàng khoảng 800 kg/m khối
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1,2 : 3,24 = 12/10 : 324/100 = 12/10 . 100/324 = 1/1 . 10/27 = 10/27 = 10:27
b) 2 1/5 : 3/4 = 11/5 : 3/4 = 11/5 . 4/3 = 44/15 = 44:15
c) 2/7 : 0.42 = 2/7 : 42/100 = 2/7 . 100/42 = 2/7 . 50/21 = 100/147 = 100;147
\(\text{Đặt }\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=k\)
\(\Rightarrow\hept{\begin{cases}x=4k\\y=12k\\z=15k\end{cases}\left(1\right)}\)
\(\text{Thay (1) vào y - x = 4 ta có :}\)
\(\Rightarrow12k-4k=4\)
\(\Rightarrow k\left(12-4\right)=4\)
\(\Rightarrow8k=4\)
\(\Rightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}x=4.2=8\\y=12.2=24\\z=15.2=30\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{y-x}{12-4}=\frac{4}{8}=\frac{1}{2}\)
\(\Rightarrow x=\frac{4.1}{2}=\frac{4}{2}=2;\)
\(y=\frac{12.1}{2}=\frac{12}{2}=6;\)
\(z=\frac{15.1}{2}=\frac{15}{2}\)
Vậy \(x=4;y=6;z=\frac{15}{2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Thay a = bk; c = dk vào đẳng thức \(\frac{2a+15b}{5a-7b}=\frac{2a+15d}{5c-7d}\). Ta được:
+, \(\frac{2bk+15b}{5bk-7b}=\frac{b\left(2k+15\right)}{b\left(5k-7\right)}=\frac{2k+15}{5k-7}\)(1)
+, \(\frac{2dk+15d}{5dk-7d}=\frac{d\left(2k+15\right)}{d\left(5k-7\right)}=\frac{2k+15}{5k-7}\)(2)
Từ (1) và (2)
\(\Rightarrow\frac{2bk+15b}{5bk-7b}=\frac{2dk+15d}{5dk-7d}\)
Hay \(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)<đpcm>
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Khi đó : \(\frac{2a+15b}{5a-7b}=\frac{2bk+15b}{5bk-7b}=\frac{b\left(2k+15\right)}{b\left(5k-7\right)}=\frac{2k+15}{5k-7}\left(1\right)\)
\(\frac{2c+15d}{5c-7d}=\frac{2dk+15d}{5dk-7d}=\frac{d\left(2k+15\right)}{d\left(5k-7\right)}=\frac{2k+15}{5k-7}\left(2\right)\)
Từ (1) và (2)
=> \(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\left(\text{đpcm}\right)\)
A= 1/2 + 1/22 + 1/23+ ... + 1/2100
=>2A = 1+1/2+1/22 +...+ 1/299
=>2A -A= (1+1/2+1/22 +...+1/299) -(1/2+1/22+1/23 +..+1/2100)
=> A = 1-1/2100
a) \(9.27^n=3^5\Rightarrow3^2.\left(3^3\right)^n=3^5\)
\(\Rightarrow3^2.3^{3n}=3^5\Rightarrow3^{5n}=3^5\)
\(\Rightarrow5n=5\Rightarrow n=1\)
b)\(\left(2^3:4\right).2^n=4\Rightarrow\left(2^3:2^2\right).2^n=2^2\)
\(\Rightarrow2.2^n=2^2\Rightarrow2^{1+n}=2^2\)
\(\Rightarrow1+n=2\Rightarrow n=1\)
c)\(3^2.3^4.3^n=3^7\Rightarrow3^{6+n}=3^7\)
\(\Rightarrow6+n=7\Rightarrow n=1\)
d)\(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n\left(2^{-1}+4\right)=3^2.2^5\)
\(\Rightarrow\)\(2^n\left(\frac{1}{2}+4\right)=3^2.2^5\)
\(\Rightarrow\)\(2^n.\frac{3^2}{2}=3^2.2^5\)
\(\Rightarrow\)\(2^{n-1}.3^2=3^2.2^5\)
\(\Rightarrow n-1=5\Rightarrow n=6\)
e)\(243\ge3^n\ge9.3^2\)
\(\Rightarrow3^5\ge3^n\ge3^2.3^2\)
\(\Rightarrow3^5\ge3^n\ge3^4\)
\(\Rightarrow5\ge n\ge4\Rightarrow5;4\)
f)\(2^{n+3}.2^n=128\)
\(\Rightarrow2^{n+3+n}=2^7\)
\(\Rightarrow2^{2n+3}=2^7\)
\(\Rightarrow2n+3=7\Rightarrow2n=4\Rightarrow n=2\)
Hok tối
/2,8-x/+1,2=/-4,6/
/2,8-x/ =4,6- 1,2
/2,8-x/ =3,4
=> 2,8-x=3,4 hoặc 2,8-x=-3,4
=> x=-0,6 hoặc x=6,2
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}
Lập hệ phương trình ra