Tìm min của \(\dfrac{a^2}{a-1}+\dfrac{b^2}{b-1}\) biết a, b > 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A C B D H I M
a) Tam giác COD và HOD là các tam giác vuông có chung cạnh huyền OD nên O, H, D, C cùng thuộc đường tròn đường kính OD.
b) Theo tính chất hai tiếp tuyến cắt nhau, ta có \(OD\perp BC\)
Tam giác DIA và DHA là hai tam giác vuông có chung cạnh AD nên DIHA là tứ giác nội tiếp.
Vậy thì \(\widehat{IDA}=\widehat{IHO}\)
Từ đó ta có \(\Delta IOH\sim\Delta AOD\left(g-g\right)\Rightarrow\frac{OI}{OA}=\frac{OH}{OD}\Rightarrow OH.OA=OI.OD\)
c) Xét tam giác vuông DBO, chiều cao BI, ta có:
\(OI.OD=OB^2\) (Hệ thức lượng)
Mà \(OB^2=OM^2;OI.OD=OH.OA\Rightarrow OM^2=OH.OA\)
\(\Rightarrow\Delta OHM\sim\Delta OMA\left(c-g-c\right)\Rightarrow\widehat{OMA}=\widehat{OHM}=90^o\)
Vậy AM là tiếp tuyến của đường tròn (O).
ÁP dụng bđt svacxơ, ta có \(\frac{1}{2a+b+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)\)
Tương tự như vậy
=> A\(\le\frac{1}{16}\left[4.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
theo gt , ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow A\le\frac{3}{4}\)
Dấu = xáy ra <=> a=b=c=1
nâng cao phát triển toán 9, tập 1 phần bài tập của chuyên đề cực trị hay min max gì đó, mik không nhớ cụ thể bài, bạn tự tìm nhá
bạn ơi, cho mik hỏi, giải pt phải có 2 vế chứ, M = bao nhiêu vậy bạn
Nếu M= 0 thì bạn dùng đánh giá là 2 căn >= 0 rồi tự giải
Ta chứng minh bđt: \(\frac{x}{\sqrt{x-1}}\ge2\)
Thật vậy ta có: \(x=\left(x-1\right)+1\ge2\sqrt{x-1}\RightarrowĐPCM\)
Về bài toán, ta có:
\(\frac{a^2}{b-1}+\frac{b^2}{b-1}\ge2\sqrt{\frac{a^2}{a-1}.\frac{b^2}{b-1}}=2.\frac{a}{\sqrt{a-1}}.\frac{b}{\sqrt{b-1}}\ge8\)
P/s: Ko chắc
\(\frac{a^2}{a-1}+\frac{^2b}{b-1}\)\(min\)
\(\Rightarrow\)a-1 min,b-1 min
mà a,b>1\(\Rightarrow\)a-1,b-1>0\(\Rightarrow\)a-1,b-1=1\(\Rightarrow\)a,b=2
vậy