K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

a) M xác định khi \(x+1\ne0\)

\(x^2+1\ne0\)

\(x^2+2x+1=\left(x+1\right)^2\ne0\)

\(\Leftrightarrow x\ne\pm1\)

b) \(M=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1}{x^2+2x+1}-\frac{1}{x^2-1}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1}{\left(x+1\right)^2}-\frac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}-\frac{1\left(x+1\right)^2}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{\left[1\left(x^2-1\right)\right]-1\left(x+1\right)^2}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}.\frac{x^2-1-1\left(x^2+2x+1\right)}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}.\frac{x^2-1-x^2-2x-1}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}.\frac{-2x-2}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\)

\(=\frac{1}{x+1}+\frac{\left(x-x^3\right)\left(-2x-2\right)}{\left(x^2+1\right)\left(x^2-1\right)\left(x+1\right)^2}\)\(=\frac{1}{x+1}+\frac{\left(x-x^3\right)\left(-2x-2\right)}{\left(x^4-1\right)\left(x+1\right)^2}\)

\(=\frac{1}{x+1}+\frac{-2\left(x-x^3\right)\left(x+1\right)}{\left(x^4-1\right)\left(x+1\right)^2}\)\(=\frac{1}{x+1}+\frac{-2\left(x-x^3\right)}{\left(x^4-1\right)\left(x+1\right)}\) 

\(=\frac{\left(x^4-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^4-1\right)\left(x+1\right)}+\frac{-2\left(x-x^3\right)\left(x+1\right)}{\left(x^4-1\right)\left(x+1\right)}\)

\(=\frac{\left(x^4-1\right)}{\left(x+1\right)\left(x^4-1\right)}+\frac{-2\left(x-x^3\right)}{\left(x^4-1\right)}\)\(=\frac{1}{x+1}+\frac{-2\left(x-x^3\right)}{\left(x^4-1\right)}\)??? Chắc hết rút được rồi :v

30 tháng 11 2018

Câu b) hơi dài quá rồi.Làm lại

b) \(M=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1}{x^2+2x+1}-\frac{1}{x^2-1}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1}{\left(x+1\right)^2}-\frac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{x-1}{\left(x+1\right)^2\left(x-1\right)}-\frac{x+1}{\left(x+1\right)^2\left(x-1\right)}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{\left(x-1\right)-\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\right)\)\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}.\frac{-2}{\left(x+1\right)^2\left(x-1\right)}\)

\(=\frac{1}{x+1}+\frac{-2\left(x-x^3\right)}{\left(x^2+1\right)\left(x+1\right)^2\left(x-1\right)}\)\(=\frac{1}{x+1}+\frac{2x\left(x+1\right)\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)^2\left(x-1\right)}\)

\(=\frac{1}{x+1}+\frac{2x}{\left(x^2+1\right)\left(x+1\right)}=\frac{x+1}{x^2+1}\) (Quy đồng và rút gọn)

29 tháng 11 2018

chị đã ngủ chưa

29 tháng 11 2018

@NguyễnLamGiang

Bn nghĩ có thể vừa ngủ vừa đăng câu hỏi ư ???

~~~
~~~

30 tháng 11 2018

Câu hỏi của Hoàng Liên - Toán lớp 9 - Học toán với OnlineMath Em tham khảo tại link này nhé !

29 tháng 11 2018

chưa ngủ à

17 tháng 6 2019

hình như thế này

30 tháng 11 2018

Số tiền mua xoài là:           100.000x5= 500.000(đồng)

Số tiền mua nho là:           120.000x2=240.000(đồng)

Số tiền mua táo là:            950.000-(500.000+240.000)=210.000(đồng)

Một kg táo có số tiền là:    210.000:3=70.000(đồng)

                                Đáp số: 70.000(đồng)

30 tháng 11 2018

\(N=\frac{3x^2-4x}{x^2+1}=\frac{4x^2-4x+1-\left(x^2+1\right)}{x^2+1}=\frac{\left(2x-1\right)^2}{x^2+1}-1\ge-1\forall x\)

Dấu "=" xảy ra khi \(2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy \(MinN=-1\Leftrightarrow x=\frac{1}{2}\)

\(P=\frac{2x+1}{x^2+2}=\frac{4x+2}{2x^2+4}=\frac{x^2+4x+4-\left(x^2+2\right)}{2x^2+4}=\frac{\left(x+2\right)^2}{2x^2+4}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+2=0\Rightarrow x=-2\)

Vậy \(MinP=-\frac{1}{2}\Leftrightarrow x=-2\)