K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

a)\(\left(d1\right)\) và \(\left(d2\right)\)cắt nhau 

\(\Leftrightarrow\hept{\begin{cases}5-k\ne k\\m-2=4-m\end{cases}}\Leftrightarrow\hept{\begin{cases}5=k+k\\m+m=4+2\end{cases}}\Leftrightarrow\hept{\begin{cases}2k\ne5\\2m=6\end{cases}}\Leftrightarrow\hept{\begin{cases}k\ne\frac{5}{2}\\m=3\end{cases}}\)  \(\Leftrightarrow m=3\)

b) \(\left(d1\right)\)và \(\left(d2\right)\)song song khi

\(\Leftrightarrow\hept{\begin{cases}5-k=k\\m-2\ne4-m\end{cases}}\Leftrightarrow\hept{\begin{cases}k=\frac{5}{2}\\m\ne3\end{cases}}\)

c) \(\left(d1\right)\)và \(\left(d2\right)\)trùng nhau 

\(\Leftrightarrow\hept{\begin{cases}5-k=k\\m-2=4-m\end{cases}}\Leftrightarrow\hept{\begin{cases}k=\frac{5}{2}\\m=3\end{cases}}\)

17 tháng 12 2017

Cm: tam giác OSM cân tại S

Ta có: góc AMO + góc OMS = 90 độ ( AM vuông góc MS )
          góc NOM + góc NMO = 90 độ ( MN là tiếp tuyến )
=> góc AMO + góc OMS = góc NOM + góc NMO
Mà góc AMO = góc NMO ( OM là phân giác góc AMN )
=> góc OMS = góc NOM
=> góc OMS = góc MOS ( S thuộc ON )

Xét tam giác OMS có:
* góc OMS = góc MOS (cmt)
=> tam giác OMS cân tại S

17 tháng 12 2017

a) Cm: tam giác ABD vuông

Xét tam giác ABD có:
* D thuộc (O)(gt)
* AB là đường kính đường tròn tâm O
=> tam giác ABD nội tiếp đường tròn tâm O, đường kính AB
=> tam giác ABD vuông tại D

b) Cm: ME là tiếp tuyến đường tròn tâm O

Ta có: OM là đường trung tuyến (tính chất đường kính cắt 1 dây)
           OM là đường cao (DE vuông góc AB <=> OM)
=> OM là đường trung trực của DE
=> O, M cách đều D, E
=> DM = DE

Xét tam giác ODM và tam giác OEM có:
* OD = OE (=R)
* DM = DE (cmt)
* OM là cạnh chung 
=> tam giác ODM = tam giác OEM (c-c-c)
=> góc ODM = góc OEM (tương ứng)
Mà góc ODM = 90 độ (DM là tiếp tuyến)
=> góc OEM = 90 độ 
=> OE vuông góc ME 
=> ME là tiếp tuyến đường tròn tâm O

c) Cm: MA.MB = MI.MO

Xét tam giác DMO vuông tại D (DM là tiếp tuyến) có đường cao DI (DE vuông góc AB tại I) :
\(MI.MO=MD^2\)( hệ thức lượng) (1)

Xét tam giác AOD có:
* OD = OA (=R)
=> tam giác AOD cân tại O
=> góc ODA = góc OAD

Ta có: góc MDA + góc ODA = 90 độ (DM là tiếp tuyến)
           góc MBD + góc OAD = 90 độ ( tam giác ABD vuông tại D)
Mà góc ODA = góc OAD (cmt)
=> góc MDA = góc MBD

Xét tam giác MAD và tam giác MDB có:
* góc DMB chung
* góc MDA = góc MBD (cmt)
=> tam giác MAD đồng dạng tam giác MDB (g-g)
=>\(\frac{MA}{MD}=\frac{MD}{MB}\)

=> \(MA.MB=MD^2\)(2)
Từ (1) và (2) => MA.MB = MI.MO

24 tháng 5 2018

Giải 

Điều kiện x,y>0

Từ hệ phương trình đề bài cho ta biến đổi

\(\sqrt{2-1/y}=2-1/\sqrt{x} \)   (1)

\(\sqrt{2-1/x}=2-1/\sqrt{y} \)   (2)

Ta bình phương cả 2 vế (1) và (2) thì ta được hệ phương trinh ở dạng triển khai là

\(2-1/y=4-4/\sqrt{x}+1/x\) (3)

\(2-1/x=4-4/\sqrt{y}+1/y\)  (4)

Thu gọn vê 3 và 4 ta được hệ phương trình sau

\(2-4/\sqrt{x}+1/x+1/y=0 \) (5)

\(2-4/\sqrt{y}+1/x+1/y=0 \) (6)

Ta có vế trái của phương trình 5 và 6 bằng nhau vì cùng bằng 0 nên ta được phương mới từ (5) và (6)

\(2-4/\sqrt{x}+1/x+1/y=2-4/\sqrt{y}+1/x+1/y \) (7)

Sau thu gọn phương trình 7 ta được 

\(-4/\sqrt{x}=-4/\sqrt{y}\)

=>\(1/\sqrt{x}=1/\sqrt{y}\)

Từ đây ta có thể dễ dạng suy ra x=y với điều kiên x,y>0

Vậy S={x=y/x,y>0}.

16 tháng 12 2017

đề sai bạn ạ, 3 là snt lớn hơn 3