Cho biểu thức A=\(\left(\frac{2x+1}{1-2x}-\frac{1-2x}{1+2x}-\frac{16x^2}{4x^2-1}\right):\frac{16x^3-4x}{4x^2-4x+1}\)
a) Tìm ĐKXĐ
b) Rút gọn
c) Tìm x để A có giá trị dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\sqrt{x^2+4}>0\forall x\) Theo bđt Cô-si cho 2 số dương, ta có:
\(\sqrt{x^2+4}+\frac{1}{\sqrt{x^2+4}}=\frac{\sqrt{x^2+4}}{4}+\frac{1}{\sqrt{x^2+4}}+\frac{3\sqrt{x^2+4}}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)
Dấu "=" xảy ra khi x=0
đáp án là :
Hàm số đã cho xác định trên D=R.
Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔
Bảng biến thiên:
Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).
Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)
Hàm số đã cho xác định trên D=R.
Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔
Bảng biến thiên:
Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).
Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)
P/S : quá dễ , t là thần đồng mà .
Mỗi ngày 3 T i c k , giờ làm như lời hứa đi
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Nên gửi tin nhắn riêng có chữ
# Test tên nói lái
\(-8:\left(4\frac{1}{5}x+\frac{3}{10}\right)=4\frac{4}{9}\)
\(-8:\left(\frac{21}{5}x+\frac{3}{10}\right)=\frac{40}{9}\)
\(\left(\frac{21}{5}x+\frac{3}{10}\right)=\left(-8\right):\frac{40}{9}\)
\(\frac{21}{5}x+\frac{3}{10}=\left(-\frac{9}{5}\right)\)
\(\frac{21}{5}x=\left(-\frac{9}{5}\right)-\frac{3}{10}\)
\(\frac{21}{5}x=\left(-\frac{21}{10}\right)\)
\(\Rightarrow x=\left(-\frac{21}{10}\right):\frac{21}{5}\)
\(\Rightarrow x=\left(-\frac{1}{2}\right)\)
(n-5)/(n+1)=(n+1-6)/(n+1)=1-6/(n+1) => (n-5)/(n+1) tối giản <=>6/(n+1) tói giản <=> 6 và n+1 chỉ có ước chung là 1.
Có 6 chia hết cho 2;3 và 6 => (n+1) không chia hết cho 2;3 và 6 => (n+1) không chia hết cho 2 và 3 => n+1 không chia hết cho 2 => n+1 khác 2p => n khác 2p -1.
n+1 không chia hết cho 3 => n+1 khác 3q => n khác 3q -1 với p và q là số nguyên.
Vậy với n khác 2p -1 và 3q -1 thì phân số đã cho là tối giản.