cho tam giác ABC vg tai A biet AB=6cm AC=8cm dg cao AH.gọi D,E lần lượt là dg chân vg kẻ từ H đến AB va AC a) Tính dien tich tam giac ABC b) chứng minh AH=DE c) kẻ trung tuyến AM của tam giác ABC chứng minh AM vg goc vs DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,2x+2y-x^2-xy=2x+2y-\left(x^2+xy\right).\)
\(=2\left(x+y\right)-x\left(x+y\right)\)
\(=\left(2-x\right)\left(x+y\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)\(2x^2+x-3=2x^2-2x+3x-3\)
\(=2x.\left(x-1\right)+3.\left(x-1\right)=\left(2x+3\right).\left(x-1\right)\)
1) \(2x^2+x-3\)\(=2x^2-2x+3x-3\)\(=2x\left(x-1\right)+3\left(x-1\right)\)\(=\left(x-1\right)\left(2x+3\right)\)
2)\(\left(2x-3\right)^2-\left(x+5\right)^2=0\)\(\Leftrightarrow\left[\left(2x-3\right)-\left(x+5\right)\right]\left[\left(2x-3\right)+\left(x+5\right)\right]=0\)
\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0+8=8\\x=\frac{0-2}{3}=\frac{-2}{3}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3n^2-13n+29=3n.\left(n-3\right)-4n+29\)
\(=3n.\left(n-3\right)-4.\left(n-3\right)+17=\left(3n-4\right).\left(n-3\right)+17\)
=> đề \(3n^2-13n+29⋮n-3\Rightarrow17⋮n-3\Rightarrow n-3\inƯ\left(17\right)=\left\{\pm1,\pm17\right\}\)
=> \(n\in\left\{4,2,-14,20\right\}\)
vì n là số nguyên dương => n\(\in\){4,2,20}
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=x+y+z\)
<=>\(\frac{x^2+x\left(y+z\right)}{y+z}+\frac{y^2+y\left(z+x\right)}{z+x}+\frac{z^2+z\left(x+y\right)}{x+y}=x+y+z\)
<=>\(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)
<=>\(S=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)
x/(y+z)+y/(x+z)+z/(x+y)=1
=>\(\frac{x^2}{\left(y+z\right)^2}\)+\(\frac{y^2}{\left(x+z\right)^2}\)+\(\frac{z^2}{\left(x+y\right)^2}\)+2(\(\frac{xy}{\left(y+z\right)\cdot\left(x+z\right)}\)+\(\frac{yz}{\left(x+z\right)\left(x+y\right)}\)+\(\frac{zx}{\left(z+y\right)\cdot\left(x+y\right)}\))=1