K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2019

a, mk ko chép lại đề đâu nhé

=\(\frac{1}{2}\left(\frac{-a+b+c}{a}+\frac{a-b+c}{b}+\frac{a+b-c}{c}\right)\)

\(=\frac{1}{2}\left(-1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}-1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}-1\right)\)

\(=\frac{1}{2}\left(-3+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{a}{c}+\frac{c}{a}\right)\)

Áp dụng BĐT Cô-si cho 2 số dương ta có

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

\(\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{b}{c}.\frac{c}{b}}=2\)

\(\frac{a}{c}+\frac{c}{a}\ge2\sqrt{\frac{a}{c}.\frac{c}{a}}=2\)

=>\(\frac{1}{2}\left(-3+\frac{b}{a}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{a}{c}+\frac{c}{a}\right)\)\(\ge\frac{1}{2}\left(-3+2+2+2\right)=\frac{3}{2}\)

=>dpcm

3 tháng 4 2019

A B C H D K 1 2

                     

3 tháng 4 2019

a) Vì BA=BA ( GT )

\(\Rightarrow\Delta BAD\) cân tại B ( đn)

\(\Rightarrow\widehat{BAD}=\widehat{BDA}\)( tính chất )      (4)

b) Vì tam giác HAD vuông tại H \(\Rightarrow\widehat{HAD}+\widehat{D1}=90^0\)( phụ nhau )    (1)

Ta có: \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}=90^0\)( h.vẽ)      (2)

 Từ (1) và (2) \(\Rightarrow\widehat{HAD}+\widehat{BDA}=\widehat{DAC}+\widehat{DAB}\)( 3)

Từ (3) và (4) \(\Rightarrow\widehat{HAD}=\widehat{CAD}\)mà AD nằm giữa 2 tia AH và AC ( c.ve)

\(\Rightarrow AD\)là phân giác của góc HAC.

c)  Xét \(\Delta HAD\)và \(\Delta CAD\)có:

           \(\hept{\begin{cases}\widehat{AHD}=\widehat{ACD}=90^0\\ADchung\\\widehat{HAD}=\widehat{CAD}\left(cmt\right)\end{cases}\Rightarrow\Delta HAD=\Delta CAD\left(ch-gn\right)}\)

\(\Rightarrow\hept{\begin{cases}HD=CD\left(2canhtuongung\right)\\AH=AK\left(2canhtuongung\right)\end{cases}}\)

Xét tam giác DHC có HD=CD ( cmt)

\(\Rightarrow\Delta DHC\)cân tại D

\(\Rightarrow\widehat{DHC}=\widehat{DCH}\left(tc\right)\) (5)

Ta có:  \(\widehat{H1}+\widehat{DHC}=\widehat{AHD}=90^0\) (6)

            \(\widehat{K1}+\widehat{DCH}=\widehat{AKD}=90^0\)(7)

Từ (5) , (6) và (7) \(\Rightarrow\widehat{H1}=\widehat{K1}\)

\(\Rightarrow\Delta AHK\)cân tại A.

d) Xét tam giác DKC vuông tại K nên \(DC>KC\)( tính chất )

                                                    \(\Rightarrow DC+AK>KC+AK\)

                                            mà AH=AK ( cmt)

                                                     \(\Rightarrow DC+AH>KC+AK\)

                                                      \(\Rightarrow DC+AH+BD>KC+AK+BD\)

                                                        mà AB=BD ( cmt)

                                                      \(\Rightarrow AK+KC+AB< DC+BD+AH\)

                                                       \(\Rightarrow AB+AC< BC+AH\left(đpcm\right)\)

                                           

( p/s: Đánh giấu cho tôi kí hiệu góc H1 và K1 nhé chắc bạn biết mà )

3 tháng 4 2019

Cho mình hỏi OD ở đâu mà tính vậy

\(\frac{1}{4}\)giờ=1:4=0,25 giờ

\(\frac{3}{2}\)giờ=3:2=1,5 giờ

7 tháng 4 2019

1/4 giờ = 1:4

3/2 giờ = 3:2

còn đáp án thì bạn ko cần nên mk ko ghi đáp án nữa

3 tháng 4 2019

nhớ giải ra mình mới k nhưng phải đúng cơ

4 tháng 4 2019

\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x^2-x}\right)\)

     \(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

      \(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\frac{x+1}{x\left(x-1\right)}\)

        \(=\frac{x^2}{x-1}\)

Vì \(P=-\frac{1}{2}\)

\(\Leftrightarrow\frac{x^2}{x-1}=-\frac{1}{2}\)ĐKXĐ:\(x\ne1\)

\(\Rightarrow2x^2=-x+1\)

\(\Rightarrow x^2+x^2+x-1=0\)

\(\Rightarrow x\left(x+1\right)+\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow x\left(x+1\right)\left(x-1\right)=0\)

\(\Rightarrow\)\(x=0\)           \(\Rightarrow\)\(x=0\)(TM)

         \(x+1=0\)          \(x=-1\)(TM)

        \(x-1=0\)           \(x=1\)(KTM)

Vậy để \(P=-\frac{1}{2}\)thì x=0 hoặc x=-1

        

       

4 tháng 4 2019

184 và 138

3 tháng 4 2019

Nên phân tích số 45 thành các số tự nhiên liên tiếp thì có thể viết được nhiều nhất số hạng có thể viết 

Có: 27 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 

Vậy tổng đó có nhiều nhất 9 số hạng.

cảm ơn nha ^.^ k cho bạn nè 

4 tháng 4 2019

\(\hept{\begin{cases}x^2-y^2+xy=1\\3x+y=y^2+3\end{cases}}\)

\(\Rightarrow3x+y=x^2+xy+2\)

\(\Leftrightarrow\left(x-1\right)\left(x+y-2\right)=0\)