K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

Trả lời:

1 + 1 = 2

Hok tốt

1+1=2


Ở trạm xe buýt, một đôi trai gái giở trò tán tỉnh nhau một cách sến súa. Chàng trai:

– Cưng à, anh yêu em!

Cô gái thẹn thùng:

– Em cũng yêu anh, mà tình yêu của em gấp đôi tình yêu của anh luôn cơ.

Chàng trai khoái trí:

– Vậy cơ à? Vậy anh yêu em gấp ba lần em yêu anh luôn nè!

Một thanh niên mang kính ngồi kế bên bĩu môi:

– Đặt tình yêu của nam và nữ lần lượt là x, y. Ta có phương trình: y = 2x; x = 3y. Suy ra: x = y = 0. Tức là chả có tình yêu nào ở đây cả!

– !!!

5 tháng 4 2019

\(b)\frac{9}{5}.x=\frac{18}{25}\)

\(\Rightarrow x=\frac{18}{25}\div\frac{9}{5}=\frac{18}{25}.\frac{5}{9}\)

\(\Rightarrow x=\frac{2}{5}\)

5 tháng 4 2019

\(e)x-20\%.x=2,5\)

\(\Rightarrow x.\left(1-\frac{1}{5}\right)=\frac{5}{2}\)

\(\Rightarrow x.\frac{4}{5}=\frac{5}{2}\)

\(\Rightarrow x=\frac{5}{2}\div\frac{4}{5}=\frac{25}{8}\)

5 tháng 4 2019

a) Xét tg ABH và tg ACH, ta có: 

\(\widehat{AHB}=\widehat{AHC}\left(AH\perp BC\right)\)

AB=AC(tg ABC cân tại A)

AH cạnh chung
Do đó : tg ABH = tg ACH (cạnh huyền - cạnh góc vuông)

\(\Rightarrow\)HB = HC (2 cạnh tương ứng)
 

b) Vì tg ABH = tg ACH (câu a)
\(\Rightarrow\)\(\widehat{BAH}=\widehat{CAH}\)(2 góc tương ứng)

c) Xét tg ADH và tg ACH, ta có:
 \(\widehat{ADH}=\widehat{AEH}\)(= 90 độ)
AH cạnh chung
góc BAH = góc CAH (câu b)
Do đó: tg ADH  = tg AEH (cạnh huyền - góc nhọn)
=> HD = HE (2 cạnh tương ứng)
=> tg HDE cân tại H

 


 


 


 


 

5 tháng 4 2019

Bài 2 : 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)

Mà \(2018=a+b+c\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)

\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)=-ab\left(a+b\right)\)

\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\left(b+c\right)=0\)

TH1 : \(a+b=0\Leftrightarrow a=-b\)

\(M=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{c^{2014}}\)

Mà \(a+b+c=2018\)

\(\Leftrightarrow-b+b+c=2018\)

\(\Leftrightarrow c=2018\)

Khi đó \(M=\frac{1}{2018^{2017}}\)

Các trường hợp còn lại tương tự

Kết quả cuối cùng : \(M=\frac{1}{2018^{2017}}\)

6 tháng 4 2019

Câu hỏi của nguyễn thị phượng - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo bài 2 ở link này nhé!

5 tháng 4 2019

Ta có \(\frac{a}{3}+\frac{a}{2}+\frac{a}{6}=\frac{2a}{6}+\frac{3a}{6}+\frac{a}{6}=\frac{6a}{6}=a\)

Mà a thuộc z nên\(\frac{a}{3}+\frac{a}{2}+\frac{a}{6}\)thuộc Z

5 tháng 4 2019

Ta có : a/3+a/2+a/6

=2a/6+3a/6+a/6

=2a+3a+a/6

=6a/6=a thuộc Z

5 tháng 4 2019

Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

12 tháng 10 2019

Ta có x2-2y2=1\(\Leftrightarrow\)x2=2y2+1\(\Rightarrow\)x là số lẻ.

Đặt x=2k+1\(\Rightarrow\) (2k+1)2=2y2+1\(\Leftrightarrow\) 4k2+4k+1=2y2+1\(\Leftrightarrow\) y2=2k2+2k\(\Rightarrow\) y chẵn, mà y là số nguyên tố \(\Rightarrow\) y=2\(\Rightarrow\) x=3

Hình : bn tự vẽ ...

Giair 

a, Do \(\widehat{AFB}=\widehat{AGB}=90^0\)nên AFCB là tứ giác nội tiếp 

b) AFGB là tứ giác nội tiếp nên suy ra, \(\widehat{GAF}=\widehat{FBG}\)(*) ( cùng chắn cung GF )

Lại có \(\widehat{CAD}=\widehat{CBD}\) (cùng chắn cung CD của (O)), nên BHD là tam giác cân.

c) Với (O), từ (*) suy ra: cung CD = cung CE, nên CD = CE.

Do đó, E và H đối xứng với nhau qua AC

d, Do \(\widehat{JBA}=90^0\) (chắn nửa đường tròn) nên BJ // CL.

Tương tự, JC // BF nên BHCJ là hình bình hành, suy ra K là là trung điểm đoạn HJ.

e) Do O và K tương ứng là trung điểm của JA và JH nên OK là đường trung bình của tam giác AHJ

Suy ra, AH = 2OK.

5 tháng 4 2019

bạn làm đc câu mấy rồi

câu a b c d e

hok tốt

5 tháng 4 2019

Có điều kiện gì nữa không ? Nếu không sao mà làm được ?

5 tháng 4 2019

Với a , b \(\inℕ^∗\)