x,y>0 tm \(x+y\ge2\)
CMR \(\sqrt{16x^2y^2+9}\left(\frac{1}{x}+\frac{1}{y}\right)\ge10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=\left(x^4+x\right)+\left(3x^3+3\right)+x^2-5x+4=x\left(x^3+1\right)+3\left(x^3+1\right)+x^2-5x+4\)
Để dư bằng 0 thì \(x^2-5x+4=0\)
\(\Rightarrow x\left(x-4\right)-\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
giải và biện luận phương trình sau:
\(\frac{3}{x-m}-\frac{1}{x-2}=\frac{2}{x-2m}\) (với m là tham số)
\(\frac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}=\frac{\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2-1}{\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2-2x^2-6x+1}\)
\(=\frac{\left(x^2+3x\right)^2-1}{\left(x^2+3x\right)^2-2\left(x^2+3x\right)+1}\)
\(=\frac{\left(x^2+3x-1\right)\left(x^2+3x+1\right)}{\left(x^2+3x-1\right)^2}=\frac{x^2+3x+1}{x^2+3x-1}\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
Đặt \(x^2+5x+4=t\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=t.\left(t+2\right)-15\)
\(=t^2+2t+1-16\)
\(=\left(t+1\right)^2-4^2\)
\(=\left(t-3\right)\left(t+5\right)\)
\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)
Ta có :
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-15\)
\(=\left[x\left(x+4\right)+1\left(x+4\right)\right]\left[x\left(x+3\right)+2\left(x+3\right)\right]-15\)
\(=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)-15\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
\(=\left(x^2+5x+4\right)\left[\left(x^2+5x+4\right)+2\right]-15\)(1)
Đặt \(x^2+5x+4=y\)thì (1) trở thành :
\(y\left(y+2\right)-15\)
\(=y^2+2y-15\)
\(=y^2+5y-3y-15\)
\(=\left(y^2+5y\right)-\left(3y+15\right)\)
\(=y\left(y+5\right)-3\left(y+5\right)\)
\(=\left(y-3\right)\left(y+5\right)\)(2)
Thay \(y=x^2+5x+4\)thì (2) trở thành:
\(\left(x^2+5x+4-3\right)\left(x^2+5x+4+5\right)\)
\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)