Cho tam giác ABC có góc A <90 độ, AB=AC. Kẻ CE vuông góc với AB ( E ∈∈ AB), BD vuông góc với AC(D∈ AC). Gọi O là giao điểm của BD và CE. CMR:
a, BD=CE
b, OE=OD
c, OB=OC
d, AO là tia phân giác của góc BAC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta được :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(đpcm\right)\)
Bài này ezz :)
Trả lời :
33 . ( - 3 )8 = ( -3 )3+8 = ( - 3 ) 11
#Chuk bn hok ttoos :3
Sai thì đừng t i c k sai nhé :)
-Nhớ đeí
Để \(x^2+5x< 0\)
Vì \(x^2\ge0\)nên \(5x>-x^2\)
\(\Rightarrow5>-x^2+x\)
Phần b nhìn hơi logic thế thôi nhưng tương tự
A B C E D
Xét \(\Delta BEC\) và \(\Delta CDB\) có :
\(\widehat{BEC}=\widehat{CDB}=90^o\left(gt\right)\)
BC : cạnh chung
\(\widehat{B}=\widehat{C}\) ( vì \(\Delta ABC\) có AB = AC \(\Rightarrow\) \(\Delta ABC\) cân tại A )
\(\Rightarrow\Delta BEC=\Delta CDB\)(cạnh huyền - góc nhọn )
\(\Rightarrow BD=CE\)
b ) Vì \(\Delta BEC=\Delta CDB\left(cmt\right)\)
\(\Rightarrow BE=CD\)
Có : \(AB=AE+BE\)
\(AC=AD+DC\)
Mà AB = AC (gt) ; BE = CD (cmt)
\(\Rightarrow AE=AD\)
Xét \(\Delta AOE\) và \(\Delta AOD\) có :
\(AE=AD\left(cmt\right)\)
\(\widehat{AEO}=\widehat{ADO}=90^o\left(gt\right)\)
OA : cạnh chung
\(\Rightarrow\Delta AOE=\Delta AOD\) ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow OE==OD\)
c ) Vì \(\Delta BEC=\Delta CDB\) (cmt)
\(\Rightarrow\widehat{BCE}=\widehat{CBD}\)
\(\Rightarrow\Delta AOB\) cân tại O
\(\Rightarrow OB=OC\)
d ) Vì \(\Delta AOE=\Delta AOD\left(cmt\right)\)
\(\Rightarrow\widehat{OAE}=\widehat{OAD}\)
\(\Rightarrow AO\) là tia phân giác của góc BAC
Chúc bạn học tốt !!!