mn giải giúp mk gấp lắm ý cảm ơn trước
tìm min max nếu có thể:
a)\(y=\frac{x^2-x+1}{x^2+x+1}\)
b)\(y=\frac{x}{x^2-5x+7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có :
\(A=\frac{1}{1+3ab+a^2}+\frac{1}{1+3ab+b^2}\ge\frac{4}{a^2+b^2+6ab+2}\)
Ta có : \(a^2+b^2+6ab+2=\left(a^2+2ab+b^2\right)+4ab+2=\left(a+b\right)^2+4ab+2=4ab+3\)
Áp dụng bđt \(xy\le\frac{\left(x+y\right)^2}{4}\) ta có : \(4ab+3\le4.\frac{\left(a+b\right)^2}{4}+3=\left(a+b\right)^2+3=1+3=4\)
\(\Rightarrow A\ge\frac{4}{a^2+b^2+6ab+2}\ge\frac{4}{4}=1\) có GTNN là 1
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
vì (a trên b )+(b trên c) +(c trên a) là (a+b+c trên b+c+a) còn( a+b trên b+c) +( b+c trên a+b)+1 là (1+1)
=>(a trên b)+(b trên c)+(c trên a)> hoặc = (a+b trên b+c)+(b+c trên a+b)+1
Mình chỉ làm ngếu ngáo thôi nhé . Mik ms học lớp 7 thôi làm bừa nhé. đúng thì đúng mà sai thì thôi nhé
cho \(Pain=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Thiện đạo \(=\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\)
Theo cô si ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{abc}{abc}}=3.\)
theo cô si ta có
\(\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)}{\left(b+c\right)\left(a+b\right)}=3}\)
có Pain - Thiện đạo \(\ge\) 3-3=0
chuyển thằng thiên đạo qua vế bên kia ta được
Pain\(\ge\)Thiên đạo ( điều cần phải chứng minh )
:)) làm bừa sai đừng chửi mik
a) MIN : \(y=\frac{\frac{1}{3}x^2+\frac{1}{3}x+\frac{1}{3}+\frac{2}{3}x^2-\frac{4}{3}x+\frac{2}{3}}{x^2+x+1}=\frac{\frac{1}{3}\left(x^2+x+1\right)+\frac{2}{3}\left(x^2-2x+1\right)}{x^2+x+1}\)
\(=\frac{1}{3}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\frac{1}{3}\)
MAX : \(y=\frac{3x^2+3x+3-2x^2-4x-2}{x^2+x+1}=\frac{3\left(x^2+x+1\right)-2\left(x^2+2x+1\right)}{x^2+x+1}\)
\(=3-\frac{2\left(x+1\right)^2}{x^2+x+1}\le3\)
b ) tương tự
bạn ơi giải như thế không đúng vs lại dấu bằng không xảy ra