K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

b: ΔBAD=ΔBHD

=>DA=DH

mà DH<DC(ΔDHC vuông tại H)

nên DA<DC
c: Xét ΔBKC có

KH,CA là các đường cao

KH cắt CA tại D

Do đó: D là trực tâm của ΔBKC

=>BD\(\perp\)KC

Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)(hai góc đối đỉnh)

Do đó: ΔDAK=ΔDHC

=>DK=DC

=>ΔDKC cân tại D

2 tháng 5 2024

                  Giải:

Gọi số tiền mà mẹ đưa An đóng tiền điện, tiền mước, tiền internet lần lượt là: \(x;y;z\)  (đồng); \(x;y;z\)  > 0

Theo bài ra ta có:

\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{7}\) = \(\dfrac{y}{5}\) = \(\dfrac{z}{2}\) = \(\dfrac{x+y+z}{7+5+2}\) = \(\dfrac{5600000}{14}\) = 400 000

\(x\) = 400 000 x 7 = 2 800 000 

y = 400 000 x 5 = 2 000 000 

z = 400 000 x 2 = 800 000 

Vậy số tiền điện, nước, internet mà bạn An phải đóng lần lượt là:

   2 800 000 đồng; 2 000 000 đồng; 800 000 đồng.

 

 

2 tháng 5 2024

a; \(\dfrac{x}{8}\) = \(\dfrac{y}{-5}\) và \(x\)  + y = 15

    Áp dụng tính chất dãy tỉ số bằng nhau ta có:

   \(\dfrac{x}{8}\)  = \(\dfrac{y}{-5}\) = \(\dfrac{x+y}{8-5}\) = \(\dfrac{15}{3}\) =  5

    \(x\)    =  5.8 =  40

    y =  5.(-5) 

   y = - 25

Vậy (\(x;y\)) = ( 40; - 25) 

2 tháng 5 2024

              b; Giải:

Một máy in hết số bao bì trong: 6 x 4 = 24 (giờ)

Thực tế số máy in số bao bì là: 6 - 2  = 4 (máy)

Nếu bị hỏng 4 máy thì sẽ in xong số bao bì trong:

      24 : 4 = 6 (giờ)

Kết luận nếu bị hỏng hai máy thì xưởng in sẽ in hết số bao bì trong 6 giờ. 

 

BC là đoạn lớn nhất

Khi x=-1;y=-1;z=-1 thì \(N=\left(-1\right)^1\cdot\left(-1\right)^2\cdot\left(-1\right)^3+\left(-1\right)^2\cdot\left(-1\right)^3\cdot\left(-1\right)^4+...+\left(-1\right)^{2014}\cdot\left(-1\right)^{2015}\cdot\left(-1\right)^{2016}\)

=1-1+1-1+...+1-1

=0

a: Xét ΔABH vuông tại A và ΔEBH vuông tại E có

BH chung

\(\widehat{ABH}=\widehat{EBH}\)

Do đó: ΔBAH=ΔBEH

b: Xét ΔBFC có

FE,CA là các đường cao

FE cắt CA tại H

Do đó: H là trực tâm của ΔBFC

c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBF}\) chung

Do đó ΔBEF=ΔBAC

=>BF=BC

=>ΔBFC cân tại B

Ta có: ΔBFC cân tại B

mà BH là đường cao

nên BH là đường trung tuyến của ΔBFC

=>K là trung điểm của FC

Xét ΔMAQ và ΔMFK có

MA=MF

\(\widehat{AMQ}=\widehat{FMK}\)(hai góc đối đỉnh)

MQ=MK

Do đó: ΔMAQ=ΔMFK

=>\(\widehat{MAQ}=\widehat{MFK}\)

=>AQ//FK

=>AQ//FC

Xét ΔBFC có \(\dfrac{BA}{BF}=\dfrac{BE}{BC}\)

nên AE//FC

mà AQ//FC

và AE,AQ có điểm chung là A

nên A,E,Q thẳng hàng

a: Xét ΔAIB và ΔAIC có

AB=AC

BI=CI

AI chung

Do đó: ΔAIB=ΔAIC

b: ΔABI=ΔACI

=>\(\widehat{AIB}=\widehat{AIC}\)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)

nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)

=>AI\(\perp\)BC

Xét ΔDBC có

DI là đường cao

DI là đường trung tuyến

Do đó: ΔDBC cân tại D

=>DB=DC

c: Ta có: DB=DE
mà D nằm giữa B và E

nên D là trung điểm của BE

Xét ΔEBC có

EI,CD là các đường trung tuyến

EI cắt CD tại G

Do đó: G là trọng tâm của ΔEBC

=>EG=2GI

Gọi độ dài quãng đường AB là x(km)

(Điều kiện: x>0)

Thời gian ô tô thứ nhất đi từ A đến B là \(\dfrac{x}{30}\left(giờ\right)\)

Thời gian ô tô thứ hai đi từ A đến B là \(\dfrac{x}{60}\left(giờ\right)\)

Ô tô thứ hai đến B trước ô tô thứ nhất 3 giờ nên ta có:

\(\dfrac{x}{30}-\dfrac{x}{60}=3\)

=>\(\dfrac{x}{60}=3\)

=>x=180(nhận)

Thời gian ô tô thứ nhất đi là 180/60=3(giờ)

Thời gian ô tô thứ hai đi là 180/30=6(giờ)

Gọi chiều dài, chiều rộng, chiều cao lần lượt là a(cm),b(cm),c(cm)

(ĐIều kiện: a>0; b>0; c>0)

Chiều dài; chiều rộng; chiều cao lần lượt tỉ lệ với 4;3;2

=>\(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{2}=k\)

=>a=4k; b=3k; c=2k

Thể tích là 192cm3 nên \(a\cdot b\cdot c=192\)

=>\(4k\cdot3k\cdot2k=192\)

=>\(24k^3=192\)

=>\(k^3=8\)

=>\(k=2\)

=>\(a=4\cdot2=8;b=3\cdot2=6;c=2\cdot2=4\)

Diện tích xung quanh là:

(8+6)x2x4=8x14=112(cm2)

Thể tích của của thùng là:

40x25x30=30000(cm3)

Thời gian hết lượng nước là:

30000:1500=20(giờ)