Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc từ B xuống AC.Gọi M,N,P lần lượt là trung điểm AB,AH,CD.
a/ Chứng minh MBCP là hình chữ nhật.
b/ Chứng minh BN vuông với NP.
c/ Lấy K trên tia đối MD sao cho M là trung điểm DK. Chứng minh K,B,C thẳng hàng.
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(DP=PC=\dfrac{DC}{2}\)
mà AB=DC
nên AM=MB=DP=PC
Xét tứ giác MBCP có
MB//CP
MB=CP
Do đó: MBCP là hình bình hành
Hình bình hành MBCP có \(\widehat{MBC}=90^0\)
nên MBCP là hình chữ nhật
b: Gọi O là trung điểm của BH
Xét ΔHAB có
N,O lần lượt là trung điểm của HA,HB
=>NO là đường trung bình của ΔHAB
=>NO//AB và NO=1/2AB
Ta có: NO//AB
AB\(\perp\)BC
=>NO\(\perp\)BC
Xét ΔBNC có
NO,BH là các đường cao
NO cắt BH tại O
Do đó: O là trực tâm của ΔBNC
=>CO\(\perp\)BN
Ta có: \(NO=\dfrac{1}{2}AB\)
AB=CD
\(CP=\dfrac{CD}{2}\)
Do đó: NO=CP
Xét tứ giác NOCP có
NO//CP
NO=CP
Do đó: NOCP là hình bình hành
=>NP//OC
mà OC\(\perp\)BN
nên BN\(\perp\)NP
c: Xét tứ giác ADBK có
M là trung điểm chung của AB và DK
=>ADBK là hình bình hành
=>KB//AD
mà BC//AD
và KB,BC có điểm chung là B
nên K,B,C thẳng hàng